K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

tách:

\(\frac{\left(t-x\right)\left(t-y\right)}{\left(t-a\right)\left(t-b\right)\left(t-c\right)}=\frac{A}{t-a}+\frac{B}{t-b}+\frac{C}{t-c}\left(1\right)\)

khi đó:

\(\left(t-x\right)\left(t-y\right)=A\left(t-b\right)\left(t-c\right)+B\left(t-c\right)\left(t-a\right)+C\left(t-a\right)\left(t-b\right)\)

Cho t=a; t=b; t=c

=> \(A=\frac{\left(a-x\right)\left(a-y\right)}{\left(a-b\right)\left(a-c\right)};B=\frac{\left(b-x\right)\left(b-y\right)}{\left(b-c\right)\left(b-a\right)};C=\frac{\left(c-x\right)\left(c-y\right)}{\left(c-a\right)\left(c-b\right)}\)

trong đẳng thức (1) ta cho t=0 ta được \(P=\frac{xy}{abc}\)

29 tháng 2 2020

Ta xét hiệu :

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}\right)\)

\(=a-b+b-c+c-a=0\)

Do đó : \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}=1006\)

Khi đó \(M=2\cdot1006=2012\)

29 tháng 2 2020

Chỉ ra được : \(M=2\cdot1006=2012\)

Gợi ý : Xét hiệu .

29 tháng 2 2020

A B C D I K O

\(1,\hept{\begin{cases}OI//AB\Rightarrow\frac{OI}{AB}=\frac{OD}{BD}\\OI//CD\Rightarrow\frac{OI}{CD}=\frac{OA}{AC}\\AB//CD\Rightarrow\frac{OA}{AC}=\frac{OB}{BD}\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}=\frac{OD}{BD}+\frac{OA}{AC}=\frac{OD}{BD}+\frac{OB}{BD}=\frac{BD}{BD}=1\)

\(\hept{\begin{cases}OK//AB\Rightarrow\frac{OC}{AC}=\frac{OK}{AB}\\OK//CD\Rightarrow\frac{OK}{CD}=\frac{OB}{BD}\\\frac{CB}{BD}=\frac{OA}{AC}\end{cases}}\Rightarrow\frac{OK}{AB}+\frac{OK}{CD}=\frac{OC}{AC}+\frac{OB}{BD}=\frac{OC}{AC}+\frac{OA}{AC}=\frac{AC}{AC}=1\)

\(2,\hept{\begin{cases}\frac{OI}{AB}+\frac{OI}{CD}=1\\\frac{OK}{AB}+\frac{OK}{CD}=1\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}+\frac{OK}{AB}+\frac{OK}{CD}=2\)

\(\Leftrightarrow\frac{OI+OK}{AB}+\frac{OI+OK}{CD}=2\)

\(\Leftrightarrow\frac{IK}{AB}+\frac{IK}{CD}=2\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\left(đpcm\right)\)

29 tháng 2 2020

Giúp mik bài này với: https://olm.vn/hoi-dap/detail/244594379058.html

29 tháng 2 2020

a) 3x - 2 = 2x-3

<=> 3x-2 -2x +3 = 0

<=> x +1 = 0

<=> x = -1

c) 3 - 4y+24+6y=y+27+3y

<=> 3 - 4y+24+6y - y - 27 - 3y = 0

<=> -2y =0

<=> y = 0

b,7-2x = 22 - 3x

<=> 7-2x -22 +3x = 0

<=> -15 +x = 0

<=> x = 15

d) x-12+4x = 25+2x-1

<=> x-12+4x -25-2x+1=0

<=> 3x -36 = 0

<=> 3x = 36

<=> x = 12

còn câu e bạn tự làm nha

\(a,3x-2=2x-3\)

\(3x-2x=-3+2\)

\(x=-1\)

Vậy pt cs nghiệm là  { -1 }

\(b,7-2x=22-3x\)

\(-2x+3x=22-7\)

\(x=15\)

Vậy pt cs nghiệm là { 15 }

bn lm nốt nha ... 

29 tháng 2 2020

Cho hợp chất \(B\) tác dụng hết với kim loại \(Al\) thu đc \(AlCl_3\)\(H_2\)

\(\Rightarrow B\)\(HCl\) đó có n.tố H, Cl ở sp

Thử lại thấy thoả mãn yêu cầu

\(2Al+6HCl\rightarrow2AlCl_3+3H_2\)

(Không chắc lắm @@)

29 tháng 2 2020

tôi lp 7

gọi \(z,y,z\text{ là các cạnh của tam giác vuông ,ta có}\)

\(x^2+y^2=z^2\left(1\right)\)

\(xy=2\left(x+y+z\right)\left(2\right)\)

\(\text{Từ (1) ta có:}\)

\(z^2=\left(z+y\right)^2-2xy=\left(x+y\right)^2-4\left(x+y+z\right)\Rightarrow\left(x+y\right)^2-4\left(x+y\right)+4=z^2-4z+4\)

\(\Rightarrow\left(x+y-2\right)^2=\left(z+2\right)^2\)

\(\Rightarrow x+y-2=z+2\left(x+y\ge2\right)\)

Thay z=x+y−4vào (2) ta được :

\(\left(x-4\right)\left(y-4\right)=8\)

\(\Leftrightarrow x-4=1;y-4=8\)hoặc  \(x-4=2;y-4=4\)

\(\Leftrightarrow x=5;y=12\)hoặc   \(x=6;y=8\)