cho pt x2 - 2(m-1)x + m2 + 3m + 2=0
tìm m để pt có 2 nghiệm pb x1 , x2 t/m -1 <x1 <x2
help me
#mã mã#
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+ab+ac+bc}\)
\(=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\Rightarrow\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}=\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si :
\(\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)
Chứng minh tương tự với các phân thức còn lại, cộng theo vế ta có :
\(VT\le\frac{\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{ab}{a+c}+\frac{ab}{b+c}\right)}{2}\)
\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
a) Ta có BĐT:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)
Khi \(a=b=c\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\ne1\end{cases}\Rightarrow}\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}}\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\frac{3\left(\sqrt{x}-1\right)}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(b,M< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\)
\(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\)\(\Rightarrow\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{2\left(\sqrt{x}+1\right)}< 0\)
\(\Rightarrow\frac{2\sqrt{x}-1-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)\(\Rightarrow\frac{\sqrt{x}-2}{2\left(\sqrt{x}+1\right)}< 0\)
Vì \(2\left(\sqrt{x}+1\right)>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\)
\(\Rightarrow\sqrt{x}>\sqrt{4}\Leftrightarrow x>4\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)
\(M=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{x-1}\)
\(M=\frac{x+\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}\right)^2-1^2}-\frac{6\sqrt{x}-4}{x-1}\)
\(M=\frac{x-2\sqrt{x}+1}{x-1}\)
\(M=\frac{\left(\sqrt{x}-1\right)^2}{x-1}\)
\(C=\left(\frac{x}{x+3\sqrt{x}}+\frac{1}{\sqrt{x}+3}\right):\left(1-\frac{2}{\sqrt{x}}+\frac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\frac{1}{\sqrt{x}+3}\right):\left(1-\frac{2}{\sqrt{x}}+\frac{6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{x+1.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\frac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}=1\)
\(ĐKXĐ:x>1\)
\(Taco:B=\left(\frac{\sqrt{\sqrt{x}-1}}{\sqrt{\sqrt{x}+1}}+\frac{\sqrt{\sqrt{x}+1}}{\sqrt{\sqrt{x}-1}}\right):\sqrt{\frac{1}{x-1}}\)
\(=\left(\frac{\left(\sqrt{\sqrt{x}-1}\right)^2}{\left(\sqrt{\sqrt{x}+1}\right)\left(\sqrt{\sqrt{x}-1}\right)}+\frac{\left(\sqrt{\sqrt{x}+1}\right)^2}{\left(\sqrt{\sqrt{x}-1}\right)\left(\sqrt{\sqrt{x}+1}\right)}\right).\sqrt{x-1}\)
\(=\frac{\sqrt{x}-1+\sqrt{x}+1}{\left(\sqrt{\sqrt{x}+1}\right)\left(\sqrt{\sqrt{x}-1}\right)}.\sqrt{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=2\sqrt{x}\)
\(A=\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x^2-2x+1\right)^2}}\)
\(=\frac{x-1}{\sqrt{y}-1}.\frac{\sqrt{\left(y-2\sqrt{y}+1\right)^2}}{\sqrt{\left(x^2-2x+1\right)^2}}\)
\(=\frac{x-1}{\sqrt{y}-1}.\frac{|y-2\sqrt{y}+1|}{|(x^2-2x+1)|}\)
\(=\frac{x-1}{\sqrt{y}-1}.\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}y\ge0\\x-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}y\ge0\\x\ne1\end{cases}}}\)
\(A=\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x^2-2x+1\right)^2}}\)
\(=\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}}\)
\(=\frac{\left(x-1\right)|\sqrt{y}-1|}{\left(\sqrt{y}-1\right)\left(x-1\right)}=\frac{|\sqrt{y}-1|}{\left(\sqrt{y}-1\right)}\)
TH1 : \(y>1\Rightarrow\sqrt{y}>1\Rightarrow\sqrt{y}-1>0\)
\(\Rightarrow|\sqrt{y}-1|=\sqrt{y}-1\)
\(\Rightarrow A=\frac{\sqrt{y}-1}{\sqrt{y}-1}=1\)
Th2 : \(0< y< 1\Rightarrow\sqrt{y}< 1\Rightarrow\sqrt{y}-1< 0\)
\(\Rightarrow|\sqrt{y}-1|=-\left(\sqrt{y}-1\right)\)
\(\Rightarrow A=\frac{-\left(\sqrt{y}-1\right)}{\sqrt{y}-1}=-1\)
KL : Nếu \(0< y< 1\Rightarrow A=-1\)
Nếu \(y>1\Rightarrow A=1\)
\(a,ĐKXĐ:x\ge0;x\ne4\)
Ta có: \(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+2}{x-4}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2x-4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
Vậy....
\(b,ĐKXĐ:x\ge0;x\ne4\)
\(ĐểP=2\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}=2\)
\(\Leftrightarrow2\left(\sqrt{x}+2\right)=3\sqrt{x}\)
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\text{(Thỏa mãn ĐKXĐ)}\)
Vậy...
a)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+2}{x-4}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Thay P = 2 vào , ta được :
\(2=\frac{3\sqrt{x}}{\sqrt{x}+2}\Leftrightarrow2\sqrt{x}+4=3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
Vậy x = 16 thì P = 2
a,Để \(\sqrt{x^2-8x-9}\) có nghĩ thì
\(x^2-8x-9\ge0\)
\(\Leftrightarrow x^2+x-9x-9\ge0\)
\(\Leftrightarrow x\left(x+1\right)-9\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-9\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\x\ge9\end{cases}\Rightarrow}x\ge9\)
\(or\orbr{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\le9\end{cases}\Rightarrow}x\le-1\)
\(Để\sqrt{4-9x^2}\text{có nghĩa}\)
\(\Rightarrow4-9x^2\ge0\)
\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)\ge0\)
\(\Leftrightarrow-\frac{2}{3}\le x\le\frac{2}{3}\)