K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

Ta có BĐT sau:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

CM:    \(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

<=>   \(a^2+b^2+c^2-ab-bc-ca\ge0\)

<=>   \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)     (*)

=> BĐT (*) LUÔN ĐÚNG !!!!

=>   \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)

=>   \(3\left(ab+bc+ca\right)\le0\)

=>   \(ab+bc+ca\le0\)

VẬY TA CÓ ĐPCM.

21 tháng 8 2020

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+ca\right)=0\)

Vì  \(a^2+b^2+c^2\ge0\forall a;b;c\)

\(\Rightarrow2\left(ab+bc+ca\right)\le0\)

\(\Rightarrow ab+bc+ca\le0\left(đpcm\right)\)

21 tháng 8 2020

a) \(5x\left(x-1\right)-3x\left(x-1\right)\)

\(=2x\left(x-1\right)\)

b) \(x\left(x+y\right)-5x-5y\)

\(=x\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x-5\right)\left(x+y\right)\)

c) \(x\left(x-y\right)+y\left(y-x\right)\)

\(=\left(x-y\right)\left(x-y\right)\)

\(=\left(x-y\right)^2\)

d) \(x^2+xy+x=x\left(x+y+1\right)\)

21 tháng 8 2020

a. 5x ( x - 1 ) - 3x ( x - 1 )

= ( 5x - 3x ) ( x - 1 )

b. x ( x + y ) - 5x - 5y

= x ( x + y ) - 5 ( x + y )

= ( x - 5 ) ( x + y )

c. x ( x - y ) + y ( y - x )

= x ( x - y ) - y ( x - y )

= ( x - y )2

 d. x2 + xy + x 

= x ( x + y + 1 )

21 tháng 8 2020

làm ơn giúp mk

21 tháng 8 2020

- 6x2 - 9xy + 15x

= - 3x ( 3y + 2x - 5 )

2x ( x - 3 ) + y ( x - 3 ) + ( 3 - x )

= ( 2x + y ) ( x - 3 ) - ( x - 3 )

= ( 2x + y + 1 ) ( x - 3 )

21 tháng 8 2020

:P

\(m^2+n^2=m+n+8\)

\(\Leftrightarrow4m^2-4m+1+4n^2-4n+1=34\)

\(\Leftrightarrow\left(2m-1\right)^2+\left(2n-1\right)^2=34\left(1\right)\)

Mà \(\left(2m-1\right)^2\ge0;\left(2n-1\right)^2\ge0;m,n\in N\)và \(5^2+3^2=3^2+5^2=34\)

Từ (1) suy ra 

\(\Leftrightarrow\hept{\begin{cases}2m-1=5\\2n-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=3\\n=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2m-1=3\\2n-1=5\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\\n=3\end{cases}}\)

Vậy cặp số tự nhiên (m; n) thỏa mãn hệ thức \(m^2+n^2=m+n+8\)là \(\left\{\left(m=3;n=2\right);\left(m=2;n=3\right)\right\}\)

21 tháng 8 2020

Ta có : \(m^2+n^2=m+n+8\)

\(\Leftrightarrow4m^2-4m+1+4n^2-4n+1=34\)

\(\Leftrightarrow\left(2m-1\right)^2+\left(2n-1\right)^2=34\left(1\right)\)

Mà \(\hept{\begin{cases}\left(2m-1\right)^2\ge0\\\left(2n-1\right)^2\ge0\end{cases}}\)và m , n thuộc N 

(1) \(\Rightarrow\left(2m-1\right)^2\le34\)

\(\Rightarrow2m-1\le5\Rightarrow2m\le6\Rightarrow m\le3\)

+) Khi m = 0 thì : \(m^2+n^2=m+n+8\) \(\Leftrightarrow n^2-n-8=0\)

\(\Delta=\left(-1\right)^2-4.\left(-8\right)=33\)\(\Rightarrow m\notin N\)

+) khi m= 1 thì : \(m^2+n^2=m+n+8\)\(\Leftrightarrow n^2-n-8=0\)

\(\Delta=\left(-1\right)^2-4.\left(-8\right)=33\)\(\Rightarrow m\notin N\)

+) Khi m =2 thì : \(m^2+n^2=m+n+8\)\(\Leftrightarrow n^2-n-6=0\)

\(\Delta=\left(-1\right)^2-4.\left(-6\right)=25>0\)

\(\Rightarrow\sqrt{\Delta}=\sqrt{25}=5\)  ; \(\hept{\begin{cases}n_1=\frac{1+5}{2}=3\left(TM\right)\\n_2=\frac{1-5}{2}=-2\left(L\right)\end{cases}}\)

+) Khi m = 3 thì : \(m^2+n^2=m+n+8\)\(\Leftrightarrow n^2-n-2=0\)

\(\Delta=\left(-1\right)^2-4.\left(-2\right)=9>0\)

\(\Rightarrow\sqrt{\Delta}=\sqrt{9}=3\)\(\hept{\begin{cases}n_3=\frac{1+3}{2}=2\left(TM\right)\\n_4=\frac{1-3}{2}=-1\left(L\right)\end{cases}}\)

vậy cặp snt ( m ; n ) thỏa mãn hệ thức \(m^2+n^2=m+n+8\)là \(\left(m;n\right)=\left(2;3\right)=\left(3;2\right)\)

20 tháng 8 2020

Nhan xet \(n^2\equiv0,1,2,4\left(mod7\right)\forall n\inℕ\) , \(7n⋮7\) va \(2020\equiv4\left(mod7\right)\)

nen suy ra \(n^2+7n+20204\equiv4,5,6,1\left(mod7\right)\)

Vay \(^{n^2+7n+2020̸}\) khong chia het cho 7

22 tháng 8 2020

lm thế khó hỉu lém ak mod là j ak e chx hok

20 tháng 8 2020

Trong tam giác ABH có PK là đường trung bình nên PK//AH và \(PK=\frac{1}{2}AH\)

Trong tam giác ACH có NR là đường trung bình nên NR//AH và \(NR=\frac{1}{2}AH\)

Do đó PK//NR và PK=NR nên PNRK là hình bình hành

Mặt khác PK//AH mà AH _|_ BC => PK _|_ BC

Lại có PN //BC (do PN là đường trung bình tam giác ABC)

=> PN _|_ PK, do đó PNRK là hình chữ nhật

Gọi S là giao của PR và NK thì SP=SN=SK=SR

Chứng minh tương tự có IS=SM=SN=SK

Tam giác FPR vuông tại F có S là trung điểm PR nên SF=SP=SR

Tương tự cũng có SE=SK=SN; SD=SI=SM

=> SD=SE=SF=SM=SN=SP=SI=SK=SR

Vậy 9 điểm I,K,R,M,N,P,D,E,F cùng thuộc 1 đường tròn tâm I

Đường tròn đi qua 9 điểm được gọi là đường tròn Euler của tam giác ABC

20 tháng 8 2020

N = (-y2 + 4)(2y3 + 6y - 1) + 2(y5 - 4y3 + 2)-  y2(-6y + 1)

N = -y2(2y3 + 6y - 1) + 4(2y3 + 6y - 1) + 2y5 - 8y3 - 4 + 6y3 - y2

N = -2y5 - 6y3 + y2 + 8y3 + 24y - 4 + 2y5 - 8y3 - 4 + 6y3 - y2

N = (-2y5 + 2y5) + (-6y3 + 8y3 - 8y3 + 6y3) + (y2 - y2) + 24y + (-4 - 4)

N = 24y - 8

Thay y = -3,5 vào biểu thức N ta có :

N = 24.(-3,5) - 8 = -84 - 8 = -92

19 tháng 8 2020

a2 - 2a + 6b + b2 = -10

<=> a2 - 2a + 6b + b2 + 10 = 0

<=> ( a2 - 2a + 1 ) + ( b2 + 6b + 9 ) = 0

<=> ( a - 1 )2 + ( b + 3 )2 = 0 (*)

\(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b+3\right)^2\ge0\forall b\end{cases}}\Rightarrow\left(a-1\right)^2+\left(b+3\right)^2\ge0\forall a,b\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}a-1=0\\b+3=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)

Vậy a = 1 ; b = -3

19 tháng 8 2020

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

19 tháng 8 2020

thanks bạn nhìu