chỉ ra các số hữu tỉ âm trong các số hữu tỉ sau: 2; -0,37; -8; 5/-7 ; -7/-9 ; -1 và 2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (x-100)2 \(\ge\) 0 => 8 (x-100 ) 2 \(\ge\) 0
=> 25 - y2 \(\ge\) 0
=> y2 \(\le\) 25 mà y là số chính phương => y \(\in\) {1;2;3;4;5}
Mà 25 - y2 \(⋮\) 8 => y \(\in\) {1;3;5}
TH1 y=1
8(x-100 ) 2 = 24
(x-100)2 = 3 (loại )
TH2 y=3
8(x-100) 2 = 16
(x-100 ) 2 = 2 (loại )
TH3 y=5
8(x-100)2 = 0
(x-100 ) 2 = 0
(x-100 ) 2 = 02
=> x-100 = 0
=> x=100
Vậy \(\hept{\begin{cases}y=5\\x=100\end{cases}}\)
\(G=\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{\left(2n\right)^2}\)
\(G< \frac{1}{2^2}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{2n\left(2n+1\right)}\)
\(G< \frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2n}-\frac{1}{2n+1}\)
\(G< \frac{1}{2}+\left(-\frac{1}{5}+\frac{1}{6}\right)+\left(-\frac{1}{7}+\frac{1}{8}\right)+...+\left(-\frac{1}{2n-1}+\frac{1}{2n}\right)-\frac{1}{2n+1}\)
\(G< \frac{1}{2}\)