K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

a, \(5\left(m+3x\right)\left(x+1\right)-4\left(1+2x\right)=80\)

Phương trình nhận \(x=2\)làm nghiệm nên :

\(5\left(m+3.2\right)\left(2+1\right)-4\left(1+2.2\right)=80\)

\(\Leftrightarrow15m+90-20=80\)

\(\Leftrightarrow15m=80+20-90\)

\(\Leftrightarrow15m=10\Leftrightarrow m=1,5\)

....

b, \(3\left(2x+m\right)\left(3x+2\right)-2\left(3x+1\right)^2=43\)

Phương trình nhận \(x=1\)làm nghiệm nên :

\(3\left(2.1+m\right)\left(3.1+2\right)-2\left(3.1+1\right)^2=43\)

\(\Leftrightarrow30+15m-32=43\)

\(\Leftrightarrow15m=43+32-30\)

\(\Leftrightarrow15m=45\Leftrightarrow m=3\)

....

\(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}+4=0\)

\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{309-x}{107}+1=0\)

\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)

\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)

\(\Leftrightarrow416-x=0\)

\(\Leftrightarrow x=416\)

4 tháng 3 2020

a) 5(m + 3x)(x + 1) - 4(1 + 2x) = 80

Phương trình có nghiệm x = 2:

5(m + 3.2)(2 + 1) - 4(1 + 2.2) = 80

<=> 5(m + 6).3 - 4.5 = 80

<=> 15(m + 6) - 4.5 = 80

<=> 15(m + 6) - 20 = 80

<=> 15(m + 6) = 80 + 20

<=> 15(m + 6) = 100

<=> m + 6 = 100 : 15

<=> m + 6 = 20/3

<=> m = 20/3 - 6

<=> m = 2/3

b) 3(2x + m)(3x + 2) - 2(3x + 1)2 = 43

Phương trình có nghiệm x = 1:

3(2.1 + m)(3.1 + 2) - 2(3.1 + 1)2 = 43

<=> 3(2 + m).5 - 2.16 = 43

<=> 15(2 + m) - 32 = 43

<=> 15(2 + m) = 43 + 32

<=> 15(2 + m) = 75

<=> 2 + m = 75 : 15

<=> 2 + m = 5

<=> m = 5 - 2

<=> m = 3

4 tháng 3 2020

a, \(5x+5=5x+5\)

\(0x=0\)

\(\RightarrowĐPCM\)

b, \(x^2+8x+16=x^2+8x+16\)

\(0x=0\)

\(\RightarrowĐPCM\)

4 tháng 3 2020

a, \(5\left(x+1\right)=5x+5\)

\(\Leftrightarrow5x+5=5x+5\)

Vậy phương trình đúng với mọi nghiệm \(x\in R\)

b,\(\left(x+4\right)^2=x^2+8x+16\)

\(\Leftrightarrow x^2+8x+16=x^2+8x+16\)

Vậy phương trình đúng với mọi nghiệm \(x\in R\)

4 tháng 3 2020

a) (x - 2)3 + (3x - 1)(3x + 1) = (x + 1)3

<=> x3 - 6x2 + 12x - 8 + 9x2 - 1 - x3 - 3x2 - 3x - 1 = 0

<=> 9x - 10 = 0

<=> 9x = 10

<=> x = 10/9

Vậy S = {10/9}

b) (x + 1)(2x - 3) = (2x - 1)(x + 5)

<=> 2x2 - x - 3 - 2x2 - 9x + 5 = 0

<=> -10x + 2 = 0

<=> -10x = -2

<=> x = 1/5

Vậy S = {1/5}

c) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)

<=> x3 - 3x2 + 3x - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22

<=> -5x2 + 2x + 5x2 + x + 22 - 1 = 0

<=> 3x = -21

<=> x = -7

Vậy S = {-7}

d) (x - 3)(x + 4) - 2(3x - 2) = (x - 4)2

<=> x2 + x - 12 - 6x + 4 - x2 + 8x - 16 = 0

<=> 3x - 24 = 0

<=> 3x = 24

<=> x = 8

Vậy S = {8}

e) x(x + 3)2 - 3x = (x + 2)3 + 1

<=> x3 + 6x2 + 9x - 3x = x3 + 6x2 + 12x + 8 + 1

<=> x3 + 6x2 + 6x - x3 - 6x2 - 12x = 9

<=> -6x = 9

<=> x = -3/2

Vậy S = {-3/2}

f) (x + 1)(x2 - x + 1) - 2x = x(x + 1)(x- 1)

<=> x3 + 1 - 2x = x3 - x

<=> x3 - 2x - x3 + x = -1

<=> -x = -1

<=> x = 1

Vậy S = {1}

4 tháng 3 2020

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+\left(z^2-2xz+x^2\right)=4\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(\Leftrightarrow2x^2-2xy+2y^2-2yz+2z^2-2xz=4\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=4\left(x^2+y^2-xy-xz-yz\right)\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)

\(\Leftrightarrow x=y=z\)

4 tháng 3 2020

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4.\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+\left(z^2-2xz+x^2\right)=4.\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(< =>2x^2-2xy+2y^2-2yz+2z^2-2xz=4.\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(< =>2.\left(x^2+y^2+x^2-xy-xz-zy\right)=4.\left(x^2+y^2+z^2-xy-xz-zy\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(< =>\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\)

\(< =>\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}< =>x=y=z}\)

4 tháng 3 2020

|x| = -x2 - 2

<=> x = -x2 - 2 hoặc x = x2 + 2

<=> x - x2 + 2 = 0 hoặc x - x2 - 2  = 0 (loại) vì < 0

<=> -x2 - x + 2x + 2 = 0 

<=> -x(x + 1) + 2(x + 1) = 0

<=> (2 - x)(x + 1) = 0

<=> 2 - x = 0 hoặc x + 1 = 0

<=> x = 2 hoặc x = -1

4 tháng 3 2020

\(VP:-x^2-2=-\left(x^2+2\right)< 0\forall x\)                ( vì \(x^2+2\ge0\forall x\)

mà \(\left|x\right|\ge0\)

PT vô nghiệm

4 tháng 3 2020

Mình cần gấp bn nào xong  trước mình hs cho

4 tháng 3 2020

Ta có: \(b< c\Rightarrow b-c< 0\)

Kết hợp với \(b+c< a+\)

\(\Rightarrow\left(b-c\right)+\left(b+c\right)< 0+\left(a+1\right)\)

\(\Rightarrow2b< a+1\)

Lại có: \(1< a\Rightarrow a+1< 2a\)

Suy ra \(2b< a+1< 2a\Rightarrow2b< 2a\)

\(\Rightarrow b< a\)(đpcm)

4 tháng 3 2020

a) \(\left|x-5\right|=x-5\)

Ta có: \(VT\ge0\Rightarrow x-5\ge0\)

\(\Rightarrow\left|x-5\right|=x-5\)

Phương trình trở thành \(x-5=x-5\)(đúng)

Vậy \(x\ge0\)

4 tháng 3 2020

b) Xét khoảng \(x< 2\)

PTTT: \(\left(2-x\right)+\left(3-x\right)=x\Leftrightarrow5=3x\)

\(\Leftrightarrow x=\frac{5}{3}\)(tm)

  Xét khoảng \(2\le x\le3\)

PTTT: \(\left(x-2\right)+\left(3-x\right)=x\Leftrightarrow x=1\)(L)

  Xét khoảng x > 3

PTTT: \(\left(x-2\right)+\left(x-3\right)=x\Leftrightarrow x=5\left(tm\right)\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{5;\frac{5}{3}\right\}\)