K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

A B C D E

Gọi AD cắt đường tròn (ABC) tại E khác A. Ta dễ có các cặp tam giác đồng dạng sau:

\(\Delta\)ABD ~ \(\Delta\)CED (g.g), \(\Delta\)ACD ~ \(\Delta\)BED (g.g) => AB.CD = AD.CE và AC.BD = AD.BE

Khi đó hệ thức cần chứng minh trở thành: AB.AD.CE + AC.AD.BE - AD2.BC = CD.DB.BC

<=> AD(AB.CE + AC.BE) - AD2.BC = CD.DB.BC

=> AD(BC.AE) - AD2.BC = CD.DB.BC (ĐL Ptolemy)

<=> AD.AE - AD2 = CD.DB <=> AD.DE = CD.DB (Luôn đúng với hệ thức lượng đường tròn)

Do vậy hệ thức cần chứng minh là đúng. Vậy AB2.CD + AC2.DB - AD2.BC = CD.DB.BC (đpcm).

11 tháng 7 2019

a) \(-\frac{1}{2}\times\sqrt{2x+1}=-\frac{3}{4}\)

\(\sqrt{2x+1}=\frac{-3}{4}:\frac{-1}{2}\)

\(\sqrt{2x+1}=\frac{3}{2}\)

\(\left(\sqrt{2x+1}\right)^2=\frac{9}{4}\)

\(2x+1=\frac{9}{4}\)

\(2x=\frac{9}{4}-1\)

\(2x=\frac{5}{4}\)

\(x=\frac{5}{4}:2\)

\(x=\frac{5}{8}\)

11 tháng 7 2019

Ta có:

\(\hept{\begin{cases}|x+1|+|y+1|=5\left(1\right)\\|x+1|=4y-4\left(2\right)\end{cases}}\)

Thay (2) vào (1):

\(4y-4+|y-1|=5\left(3\right)\)

+Nếu \(y\ge-1\Rightarrow4y-4+y+1=5\Rightarrow5y=8\Rightarrow y=\frac{8}{5}\left(TM\right)\)

Thay y = 8/5 vào (2) ta có: 

\(|x+1|=4.\frac{8}{5}-4\)

\(\Leftrightarrow|x+1|=\frac{12}{5}\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{12}{5}\\x+1=\frac{-12}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{5}\\x=-\frac{17}{5}\end{cases}}\)

+Nếu \(y\le-1\Rightarrow4y-4-y-1=5\Rightarrow3y=10\Rightarrow y=\frac{10}{3}\left(L\right)\)

6 tháng 9 2020

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.........+\frac{1}{\sqrt{2017}+\sqrt{2018}}\)

\(=\frac{2-1}{\sqrt{1}+\sqrt{2}}+\frac{3-2}{\sqrt{2}+\sqrt{3}}+........+\frac{2018-2017}{\sqrt{2017}+\sqrt{2018}}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}+......+\)

\(\frac{\left(\sqrt{2018}-\sqrt{2017}\right)\left(\sqrt{2018}+\sqrt{2017}\right)}{\sqrt{2017}+\sqrt{2018}}\)

\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+........+\left(\sqrt{2018}-\sqrt{2017}\right)\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+......+\sqrt{2018}-\sqrt{2017}\)

\(=-\sqrt{1}+\sqrt{2018}=\sqrt{2018}-\sqrt{1}\)

bài 1

\(\frac{x-1}{x+3}>0\)   \(\left(x\ne-3\right)\)

   TH1  \(\hept{\begin{cases}x-1>0\\x+3< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>1\\x< -3\end{cases}}\)(vô lí)

      TH2 \(\hept{\begin{cases}x-1< 0\\x+3>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-3\end{cases}}\)\(\Rightarrow-3< x< 1\)

bài 2 . với dạng này ta áp dụng bđt \(|x|< A\Leftrightarrow\orbr{\begin{cases}x< -A\\x>A\end{cases}}\)

|x - 5| >2

\(\Leftrightarrow\orbr{\begin{cases}x-5>2\\x-5< -2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>7\\x< 3\end{cases}}\)

#mã mã#

11 tháng 7 2019

a) \(\Delta'=m^2-\left(m-4\right)=m^2-m+4=m^2-2.m.\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\)

\(=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0;\forall m\)

=> phương trình (1) luôn có hai nghiệm phân biệt với mọi m

b) Áp dụng định lí Viet ta có: 

\(x_1.x_2=m-4\)

\(x_1+x_2=-2m\)

=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=\left(-2m\right)^2-2\left(m-4\right)=4m^2-2m+8\)

=> \(x_1^3+x_2^3=\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=\left(-2m\right)\left(4m^2-2m+8-\left(m-4\right)\right)\)

\(=-2m\left(4m^2-3m+12\right)\)

Theo bài ra ta có:

 \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

 \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1.x_2}\)

Thay vào ta có:

\(-2m=\frac{-2m\left(4m^2-3m+12\right)}{m-4}\)( đk m khác 4)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m-4=4m^2-3m+12\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\left(tm\right)\\4m^2-4m+16=0\left(l\right)\end{cases}\Leftrightarrow m=0}\)

Vì \(4m^2-4m+16=\left(2m-1\right)^2+15>0\) với mọi m

Vậy m =0

12 tháng 7 2019

cảm ơn nhìu

11 tháng 7 2019

A B C I D E F H K

a) Từ I hạ IH,IK lần lượt vuông góc với AB,AC. Theo tính chất điểm nằm trên phân giác của góc thì IH = IK.

Xét \(\Delta\)IHE và \(\Delta\)IKD: IH = IK, ^IHE = ^IKD = 900, IE = ID (gt) => \(\Delta\)IHE = \(\Delta\)IKD (Ch.cgv)

=> ^IEH = ^IDK hay ^IEA = ^IDC => Tứ giác ADIE nội tiếp

=> ^BAC = 1800 - ^DIE = 1800 - ^BIC = 1800 - (1800 - ^ABC/2 - ^ACB/2) = ^ABC/2 + ^ACB/2

= 900 - ^BAC/2 => 3.^BAC = 1800 => ^BAC = 600. Vậy góc BAC = 600.

b) Trên cạnh BC lấy điểm F sao cho IF là phân giác của ^BIC.

Theo câu a: ^BAC = 600, tứ giác ADIE nội tiếp => ^DIE = ^BIC = 1200 => ^BIF = ^CIF = 600

Mà ^BIE = ^CID = ^BAC = 600 nên ^BIE = ^BIF = ^CIF = ^CID

Dễ dàng chỉ ra \(\Delta\)BEI = \(\Delta\)BFI (g.c.g), \(\Delta\)CDI = \(\Delta\)CFI (g.c.g)

=> BE = BF,CD = CF. Do đó BE + CD = BC. Tức là \(\frac{BE}{BC}+\frac{CD}{BC}=1\)

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{BE}{BC}=\frac{AE}{AC}\left(=\frac{IE}{IC}\right)=\frac{BE+AE}{BC+AC}=\frac{AB}{BC+AC}\)

Từ đó \(\frac{AB}{BC+CA}+\frac{AC}{AB+BC}=1\)=> \(\frac{AB+BC+CA}{AB+BC}+\frac{AB+BC+CA}{BC+CA}=3\)

Vậy thì \(\frac{1}{AB+BC}+\frac{1}{BC+CA}=\frac{3}{AB+BC+CA}\) (đpcm).

11 tháng 7 2019

hình như là -4

11 tháng 7 2019

\(\left|x-3\right|=\left|x+5\right|\)

\(\Rightarrow\orbr{\begin{cases}x-3=x+5\\x-3+x+5=0\end{cases}}\)

\(\Rightarrow2x+2=0\)

=> 2x = -2

=> x = -1

vậy_