K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow a^{2018}+b^{2018}+c^{2018}\ge\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)

Mà đẳng thức trên xảy ra dấu =

\(\Leftrightarrow a=b=c\Leftrightarrow P=0\)

Bài kia tí nghĩ nốt, khó v

26 tháng 8 2020

Sửa đề em nhé: \(\frac{2}{ab}-\frac{1}{c^2}=4\) và tính \(a+b+2c\)

Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ca}+4=4\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-c\\b=-c\end{cases}}\)\(\Leftrightarrow a+b+2c=0\)

25 tháng 8 2020

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)

 \(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)

=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)

=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)

=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)

Khi đó  Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)

= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020

= 1 + 1 + 1 = 3

Vậy P = 3 

24 tháng 8 2020

x4 - 9x3 + 28x2 - 36x + 16

Thử với x = 4 ta có :

44 - 9.43 + 28.42 - 36.4 + 16 = 0

Vậy 4 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 4

Thực hiện phép chia đa thức cho x - 4 ta được x3 - 5x2 + 8x - 4

Vậy ta phân tích được ( x - 4 )( x3 - 5x2 + 8x - 4 )

Tiếp tục : Thử x = 2 với x3 - 5x2 + 8x - 4

Ta có : 23 - 5.22 + 8.2 - 4 = 0 

Vậy 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì x3 - 5x2 + 8x - 4 chia hết cho x - 2

Thực hiện phép chia  x3 - 5x2 + 8x - 4 cho x - 2 ta được x2 - 3x + 2

Vậy ta phân tích được ( x - 4 )( x - 2 )( x2 - 3x + 2 )

x2 - 3x + 2 = x2 - x - 2x + 2 

                  = x( x - 1 ) - 2( x - 1 )

                  = ( x - 2 )( x - 1 )

Vậy : x4 - 9x3 + 28x2 - 36x + 16 = ( x - 4 )( x - 2 )( x - 2 )( x - 1 ) = ( x - 4 )( x - 2 )2( x - 1 )

24 tháng 8 2020

a. \(x^4-9x^3+28x^2-36x+16\)

\(=x^4-8x^3+20x^2-16x-x^3+8x^2-20x+16\)

\(=x\left(x^3-8x^2+20x-16\right)-\left(x^3-8x^2+20x-16\right)\)

\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)

\(=\left(x-1\right)\left(x^3-6x^2+8x-2x^2+12x-16\right)\)

\(=\left(x-1\right)\left[x\left(x^2-6x+8\right)-2\left(x^2-6x+8\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-2x-4x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)

24 tháng 8 2020

Ta có: \(\left(48x^2+8x-1\right)\left(3x^2+5x+2\right)-4\)

    \(=\left[\left(48x^2-4x\right)+\left(12x-1\right)\right]\left[\left(3x^2+3x\right)+\left(2x+2\right)\right]-4\)

    \(=\left[4x.\left(12x-1\right)+\left(12x-1\right)\right]\left[3x.\left(x+1\right)+2.\left(x+1\right)\right]-4\)

    \(=\left(4x+1\right).\left(12x-1\right)\left(3x+2\right).\left(x+1\right)-4\)

    \(=\left[\left(4x+1\right)\left(3x+2\right)\right]\left[\left(12x-1\right)\left(x+1\right)\right]-4\)

    \(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Gọi \(a=12x^2+11x-1\)\(\Rightarrow\)\(a+3=12x^2+11x+2\)

Ta lại có: \(\left(a+3\right).a-4=a^2+3a-4\)

                                               \(=\left(a^2-a\right)+\left(4a-4\right)\)

                                               \(=a.\left(a-1\right)+4.\left(a-1\right)\)

                                               \(=\left(a+4\right).\left(a-1\right)\)

                                               \(=\left(12a^2+11x-1+4\right).\left(12a^2+11-1-1\right)\)

                                               \(=\left(12a^2+11x+3\right).\left(12a^2+11-2\right)\)

24 tháng 8 2020

Đặt \(a=x^2+x+1\)\(\Rightarrow\)\(a+1=x^2+x+2\)

Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-6=a.\left(a+1\right)-6\)

                                                                             \(=a^2+a-6\)

                                                                             \(=\left(a^2-2a\right)+\left(3a-6\right)\)

                                                                             \(=a.\left(a-2\right)+3\left(a-2\right)\)

                                                                             \(=\left(a+3\right).\left(a-2\right)\)

                                                                             \(=\left(x^2+x+1+3\right).\left(x^2+x+1-2\right)\)

                                                                             \(=\left(x^2+x+4\right)\left(x^2+x-1\right)\)

   Chúc bn hok tốt

24 tháng 8 2020

( x2 + x + 1 )( x2 + x + 2 ) - 6 (*)

Đặt x2 + x + 1 = t

(*) = t( t + 1 ) - 6

     = t2 + t - 6

     = t2 - 2t + 3t - 6

     = t( t - 2 ) + 3( t - 2 )

     = ( t - 2 )( t + 3 )

     = ( x2 + x + 1 - 2 )( x2 + x + 1 + 3 )

     = ( x2 + x - 1 )( x2 + x + 4 )

     

24 tháng 8 2020

a. \(y=\frac{2}{2x+3}\in Z\)

\(\Rightarrow2x+3\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow2x\in\left\{-5;-4;-2;-1\right\}\). Vì x thuộc Z

\(\Rightarrow x\in\left\{-2;-1\right\}\)

b. \(y=\frac{2x-1}{2x-3}=\frac{2x-3+2}{2x-3}=1+\frac{2}{2x-3}\)

Vì y thuộc Z nên 2 / 2x - 3 thuộc Z

\(\Rightarrow2x-3\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow2x\in\left\{1;2;4;5\right\}\). Vì x thuộc Z

\(\Rightarrow x\in\left\{1;2\right\}\)

c. \(y=\frac{2x^2-1}{2x-3}=\frac{x\left(2x-3\right)+2x-3-x+2}{2x-3}=x+1-\frac{x+2}{2x-3}\)

Vì y thuộc Z nên x thuộc Z ; x + 2 / 2x - 3 thuộc Z

=> 2x + 4 / 2x - 3 thuộc Z

=> 2x - 3 + 7 / 2x - 3 thuộc Z

=> 7 / 2x - 3 thuộc Z

\(\Rightarrow2x-3\in\left\{-7;-1;1;7\right\}\)

\(\Rightarrow2x\in\left\{-4;2;4;10\right\}\)

\(\Rightarrow x\in\left\{-2;1;2;5\right\}\) ( tm x thuộc Z )

d,e tương tự

24 tháng 8 2020

lm hết hộ mik

26 tháng 8 2020

Hy vọng bài này giúp được bạn, vào TKHĐ xem nhé

24 tháng 8 2020

x4 - 2y2 = 1 => x4 - 1 = 2y( 1 )

Dễ thấy : x lẻ \(x^4\equiv1\) ( mod 4 )

=> y2 chẵn => y chẵn

Đặt \(x=2k+1;y=2n\left(k;n\in Z\right)\). Ta có :

\(\left(4k^2+4k+1\right)^2-1=8n^2\)

\(\Leftrightarrow\left(4k^2+4k+2\right)\left(4k^2+4k\right)=8n^2\)

\(\Leftrightarrow\left(2k^2+2k+1\right)\left(k^2+k\right)=n^2\)

Với k = 0 thì \(y=0\) ( tm )

Thay y = 0 vào ( 1 ) ta được \(x=\pm1\) ( tm )

Với \(k\ge1\)

Đặt \(k^2+k=m\)

\(\Rightarrow\left(2m+1\right)m=n^2\)

=> m ; 2m + 1 là SCP

Ta lại có : \(k^2< k^2+k< \left(k+1\right)^2\) 

Vì k2 + k kẹp giữa 2 SCP liên tiếp nên k2 + k không thể là SCP

Vậy pt có các nghiệm ( x ; y ) là : ( 1 ; 0 ) ; ( - 1 ; 0 ) 

24 tháng 8 2020

Tohru ( ʚ๖ۣۜTεαм ๖ۣۜFℓαʂɦɞ )  làm vậy có dài không bạn?

\(x^4-2y^2=1\Leftrightarrow x^4=1+2y^2\)

Do \(\hept{\begin{cases}x^4\ge0\forall x\\2y^2\ge0\forall y\end{cases}}\)

Để x,y nguyên => \(\hept{\begin{cases}x^4=1\\2y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}}\)

a, \(\left(x+2\right)^3-x\left(x^2+6x-3\right)=0\Leftrightarrow x^3+4x^2+4x+2x^2+8x+8-x^3-6x^2+3x=0\)

\(\Leftrightarrow15x+8=0\Leftrightarrow x=-\frac{8}{15}\)

b, \(\left(x+4\right)^3-x\left(x+6\right)^2=7\Leftrightarrow12x+64=0\Leftrightarrow x=-\frac{19}{4}\)làm tắt:P 

Tự làm nốt nhé