Chứng minh rằng với mọi số nguyên dương n thì ta luôn có n và 22n +1 là hai số nguyên tố cùng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tử và mẫu cảu phân số cũ là a;b
Ta có a+4/b+4 = 2/3
Vì mẫu lớn hơn tử 9 đơn vị mà cùng tăng 4 đơn vị nên mẫu mới hơn tử mới 9 đơn vị
mà phân số mới có mẫu mới hơn tử 1 đơn vị nên ta gấp tử và mẫu với 9 rồi trừ cho 4 ta được phân số cũ
=>2/3=18/27=>18-4/27-4=14/23
Vậy........................
\(\left(1\right)\Leftrightarrow2x-3x^2+11-33x=6x-4-15x^2+10x\)
\(\Leftrightarrow12x^2-47x+15=0\)
\(\Delta=47^2-4.12.15=1489,\sqrt{\Delta}=\sqrt{1489}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{47+\sqrt{1489}}{24}\\x=\frac{47-\sqrt{1489}}{24}\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{\left(x-3\right)^2-\left(x+3\right)^2}{x^2-9}=\frac{-5}{x^2-9}\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x+3\right)^2=-5\)
\(\Leftrightarrow x^2-6x+9-x^2-6x-9=-5\)
\(\Leftrightarrow-12x=-5\Leftrightarrow x=\frac{5}{12}\)
A B C E D
Gọi BE là đường thẳng song song với AD; \(E\in AC\)
Vì \(BE//AD\Rightarrow\widehat{ABE}=\widehat{BAD}\)( hai góc so le trong )
Mà vì AD là tia phân giác của \(\widehat{BAC}\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{\widehat{BAC}}{2}=\frac{120^o}{2}=60^o\)
\(\Rightarrow\widehat{ABE}=60^o\)
Lại có : \(\widehat{BAC}+\widehat{BAE}=180^o\)( \(E\in BC\))
\(\Rightarrow120^o+\widehat{BAE}=180^o\Rightarrow\widehat{BAE}=180^o-120^o=60^o\)
Xét \(\Delta ABE\)có : \(\widehat{BAE}=\widehat{ABE}=60^o\)
\(\Rightarrow\Delta ABE\)là tam giác đều ( tính chất + hệ quả tam giác cân )
\(\Rightarrow BE=AE=AB=6\)( Đơn vị đo )
Do \(BE//AD\Rightarrow\frac{AD}{BE}=\frac{AC}{EC}=\frac{12}{AC+AE}=\frac{12}{12+6}=\frac{12}{18}=\frac{2}{3}=\frac{AD}{6}\)
\(\Rightarrow AD=\frac{2\cdot6}{3}=4\)( đơn vị đo )
Một lần nữa tớ lại xin lỗi vì cái hình củ chuối ạ. Mong cậu xem phần mình chứng minh để dựng hình sao cho chuẩn với đề bài.
\(x^2+2x-2=0\)
Ta có \(\Delta=2^2+4.2=12\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-2+\sqrt{12}}{2}=\sqrt{3}-1\\x=-\sqrt{3}-1\end{cases}}\)
Phần a,b nha
a)Xét tứ giác MDHE, có:
MDHˆ=900MDH^=900
Mˆ=900M^=900
HEMˆ=900HEM^=900
=> Tứ giác MDHE là hình chữ nhật
b) Gọi giao điểm của MH là DE là O MDHE là hình chữ nhật nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường
=> OH=OE
Xét tam giác EOH, có:
OH=OE(CMT)
=> Tam giác EOH cân tại O
=> H1ˆ=E1ˆH1^=E1^
Xét DEHP vuông tại E ,có:
A là trung điểm PH
=> AE = AH.
=> H2ˆ=E2ˆH2^=E2^
=> AEOˆ=AHOˆAEO^=AHO^ =900=900
Từ đó góc AEO = 900
hay tam giác DEA vuông tại E.
\(x^3-2x=-x^2+2\)
\(\Leftrightarrow x^3+x^2-2x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Ta có: \(x^3-2x=-x^2+2\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(2x+2\right)=0\)
\(\Leftrightarrow x^2.\left(x+1\right)-2.\left(x+1\right)=0\)
5\(\Leftrightarrow\left(x+1\right).\left(x^2-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x^2=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm\sqrt{2}\end{cases}}\)
Vậy \(S=\left\{-\sqrt{2};-1;\sqrt{2}\right\}\)
Bài 1: Giải phương trình:
a)
b) (x+5)(x+2) – 3(4x-3) = (5 – x) 2
c) ( 3x – 1) 2 – 5( 2x + 1)2 + ( 6x – 3) ( 2x+ 1) = ( x – 1)2
Bài 2: Giải phương trình:
a)
b)
Bài 3: Giải Phương trình với tham số a, b
a) a ( ax+ b) = b2 (x – 1)
b) a2x – ab = b2( x- 1)
Bài 4: Giải phương trình mới tham số a
a)
b)
c)
\(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(5-x\right)2\)
\(\Leftrightarrow x^2+7x+10-12x+9=10-2x\)
\(\Leftrightarrow x^2-3x+9=0\)
Mà \(x^2-3x+9>0\)nên pt vô nghiệm
+)Gọi d là ƯCLN(n,22n+1)
\(\Rightarrow n⋮d;22n+1⋮d\)
\(n⋮d\)
\(\Rightarrow22n⋮d\)(1)
\(22n+1⋮d\)(2)
+)Từ (1) và (2)
\(\Rightarrow22n+1-22n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=1\)
=>d=1
\(\RightarrowƯCLN\left(n,22n+1\right)=1\)
=>n và 22n+1 nguyên tố cùng nhau với mọi n nguyên dương
Chúc bn học tốt