1 phần x +1 - x phần x mũ 2 -x + 1 =3 phần x mũ 3 +1 giải chi tiết hộ tớ ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 100 - 7 x ( x - 5 ) = 65
-7 x ( x - 5 ) = 65 - 100
-7 x ( x - 5 ) = -35
x - 5 = \(\dfrac{-35}{-7}\)
x - 5 = 5
x = 10
2) 7 + 2 x ( x - 3 ) =11
2 x ( x - 3 ) = 11 - 7
2 x ( x - 3 ) = 4
x - 3 = \(\dfrac{4}{2}\)
x - 3 = 2
x = 5
\(2\cdot4\cdot6\cdot8\cdot10\cdot12⋮5\)
\(40⋮5\)
Do đó: \(A=2\cdot4\cdot6\cdot8\cdot10\cdot12+40⋮5\)
\(2\cdot4\cdot6\cdot8\cdot10\cdot12⋮8;40⋮8\)
Do đó: \(A=2\cdot4\cdot6\cdot8\cdot10\cdot12+40⋮8\)
`A = 2.4.6.8.10.12 + 40`
Ta có:
`2.4.6.8.10.12` có thừa số `8` và `5 `
`=> 2.4.6.8.10.12⋮ 8` và `5`
`40 ⋮ 8` và `5`
`=> A = 2.4.6.8.10.12 + 40 ⋮ 8` và `5 (dpcm)`
-------------------------------
Nếu `a ⋮c` và `b ⋮c => a + b ⋮c `
\(A=n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n⋮5\)
`A = n(2n - 3) - 2n(n+1) `
`= 2n^2 - 3n - 2n^2 - 2n`
`= -5n `
Mà `-5 ⋮ 5`
`=> -5n ⋮ 5 ∀n` thuộc `Z`
Hay `A ⋮ 5 ∀n` thuộc `Z`
\(\left(x+4\right)\left(x-4\right)-\left(x-3\right)^2\)
\(=x^2-16-\left(x^2-6x+9\right)\)
\(=x^2-16-x^2+6x-9\)
=6x-25
\(\left(4x+12\right)\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x+12=0\\x+5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=-12\\x=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;-5\right\}\)
(4x+12)(x+5)=0
=>4(x+3)(x+5)=0
=>(x+3)(x+5)=0
=>\(\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}+\dfrac{1}{3^{99}}\\ 3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}< 1\left(DPCM\right)\)
Ta có:
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}\\ \Rightarrow B=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
Vì \(1-\dfrac{1}{3^{100}}< 1\) nên:
\(\dfrac{1-\dfrac{1}{3^{100}}}{2}< \dfrac{1}{2}< 1\) hay \(B< 1\)
Vậy...
5: a+b=7
=>a=7-b
b+c=9
=>c=9-b
c+a=8
=>7-b+9-b=8
=>16-2b=8
=>2b=16-8=8
=>b=4
=>a=7-4=3;c=9-4=5
1: a+b=17
a+b+c=20
=>c=20-17=3
a+c=15
=>a=15-c=15-3=1
b=17-a=17-1=16
2: \(\left\{{}\begin{matrix}a+b=5\\b+c=9\\a+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\c=9-b\\5-b+9-b=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}14-2b=6\\a=5-b\\c=9-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=8\\a=5-b\\c=9-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\a=5-4=1\\c=9-4=5\end{matrix}\right.\)
3: \(c=\dfrac{abc}{ab}=\dfrac{288}{24}=12\)
bc=96
=>b=96/12=8
\(a=\dfrac{24}{b}=\dfrac{24}{8}=3\)
4: \(\left\{{}\begin{matrix}ab=36\\bc=45\\ca=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{36}{b}\\c=\dfrac{45}{b}\\\dfrac{36}{b}\cdot\dfrac{45}{b}=20\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b^2=36\cdot45:20=81\\a=\dfrac{36}{b}\\c=\dfrac{45}{b}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b\in\left\{9;-9\right\}\\a=\dfrac{36}{b}\\c=\dfrac{45}{b}\end{matrix}\right.\)
TH1: b=9
\(a=\dfrac{36}{9}=4;c=\dfrac{45}{b}=\dfrac{45}{9}=5\)
TH2: b=-9
=>\(a=\dfrac{36}{-9}=-4;c=\dfrac{45}{-9}=-5\)
ĐKXĐ: \(x\ne-1\)
\(\dfrac{1}{x+1}-\dfrac{x}{x^2-x+1}=\dfrac{3}{x^3+1}\)
=>\(\dfrac{1}{x+1}-\dfrac{x}{x^2-x+1}=\dfrac{3}{\left(x+1\right)\left(x^2-x+1\right)}\)
=>\(\dfrac{x^2-x+1-x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{3}{\left(x+1\right)\left(x^2-x+1\right)}\)
=>\(x^2-x+1-x^2-x=3\)
=>-2x+1=3
=>-2x=2
=>x=-1(loại)
vậy: \(x\in\varnothing\)