1 đội xe lên kế hoạch chở hết 200 tấn hàng trong 1 số ngày quy định .do mỗi ngày đội đó chở vượt mức 5 tấn nên đã hoàn thành sớm hơn 1 ngày quy định và trở thêm 25 tấn .tính thời gian chở hết hàng theo kế hoạch
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2+\sqrt{4x-5}>\sqrt{x}+25\)
ĐK: \(x\ge\frac{5}{4}\)
\(9x^2+\sqrt{4x-5}>\sqrt{x}+25\)
<=> \(9x^2-25+\sqrt{4x-5}-\sqrt{x}>0\)
<=> \(\left(3x-5\right)\left(3x+5\right)+\frac{3x-5}{\sqrt{4x-5}+\sqrt{x}}>0\)
<=> \(\left(3x-5\right)\left(3x+5+\frac{1}{\sqrt{4x-5}+\sqrt{x}}\right)>0\)
<=> 3x - 5 > 0 vì \(3x+5+\frac{1}{\sqrt{4x-5}+\sqrt{x}}>0\) với mọi \(x\ge\frac{5}{4}\)
<=> x > 5/3 thỏa mãn đk
\(\sqrt{-x^2+6x-5}>8-2x\)
\(\Leftrightarrow\hept{\begin{cases}-x^2+6x-5>0\\8-2x\le0\end{cases}}\left(1\right)\)hoặc \(\hept{\begin{cases}-x^2-5x+6>0\\8-2x< 0\\-x^2+6x-5>64-32x+4x^2\end{cases}\left(2\right)}\)
(1) cho nghiệm \(4\le x\le5\)
\(\left(2\right)\Leftrightarrow\hept{\begin{cases}-x^2+6x-5\ge0\\8-2x>0\\5x^2-38x+69< 0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le5\\x< 4\\3< x< \frac{23}{5}\end{cases}\Leftrightarrow}3< x< 4}\)
Hợp nghiệm (1) và (2) ta được \(3< x\le5\)
ta có : 2020 \(⋮\)4 nên năm 2020 là năm nhuận và có 366 ngày
Mà 25 là thứ 2 nên cứ sau 1 tuần ( 7 ngày ) thì lại có 1 ngày thứ 2
có : 366 : 7=52 dư 2
vậy sau 366 ngày là \(\approx\) 52 tuần và 2 ngày là thứ 2+2=4
Vậy ngày 25 tháng 5 năm 2021 là thứ 4
Vì năm 2021 là năm không nhuận nên có 365 ngày.
Ta co: 365 : 7 = 52( dư 1)
Ta thêm 1 ngày vào thứ 2 thì ra thứ 3.
gợi ý tan 10o = cot 80o
mà tan a . cot a =1
phần còn lại tự làm
chưa hiểu thì hỏi nhé
\(P=\sqrt{x^4+x^2y^2}+x^2=\sqrt{x^4+\frac{1}{x^2}}+x^2\)
Ta có: \(x^4+\frac{1}{x^2}=x^4+\frac{1}{8x^2}+\frac{1}{8x^2}+...+\frac{1}{8x^2}\ge9\sqrt[9]{x^4.\left(\frac{1}{8x^2}\right)^8}\)
\(=9\sqrt[9]{\frac{1}{8^8.x^{12}}}\)
=> \(P=3\sqrt[18]{\frac{1}{8^8.x^{12}}}+x^2\)
\(=\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+x^2\)
\(\ge4\sqrt[4]{\left(\sqrt[18]{\frac{1}{8^8x^{12}}}\right)^3.x^2}\)
\(=4.\left(\frac{1}{8^{\frac{1}{3}}.x^{\frac{1}{2}}}\right).x^2=2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^4=\frac{1}{8x^2}\\x^2=\sqrt[8]{\frac{1}{8^8x^{12}}}\end{cases}}\)<=> x^2 = 1/2 khi đó y = 2 , x = \(\frac{1}{\sqrt{2}}\)
Vậy GTNN của P = 2.