Tính
1.\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
2. \(\left(\sqrt{8}-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{18}-\sqrt{8}+\sqrt{5}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(2\sqrt{8}+3\sqrt{3}+1\right)}{\sqrt{6}}\)
= \(\frac{4\sqrt{2}+3\sqrt{3}+1}{\sqrt{6}}\)
= \(\frac{8\sqrt{3}+9\sqrt{2}+6}{6}\)
Điều kiện: \(n\ge1\)
\(B^2=\left(2\sqrt{n}\right)^2=4n\)
\(A^2=n-1+n+1+2\sqrt{\left(n-1\right)\left(n+1\right)}=2n+2\sqrt{n^2-1}\)
\(< 2n+2\sqrt{n^2}=2n+2\left|n\right|=2n+2n=4n=B^2\)
\(\Rightarrow A< B\)(vì A;B > 0)
\(\frac{\left(5\sqrt{7}+7\sqrt{5}\right)}{\sqrt{35}}\)
= \(\frac{\sqrt{5}.\left(\sqrt{35}+7\right)}{\sqrt{35}}\)
= \(\frac{\sqrt{35}+7}{\sqrt{7}}\)
= \(\sqrt{5}+\sqrt{7}\)
\(\frac{5\sqrt{7}+7\sqrt{5}}{\sqrt{35}}=\frac{\sqrt{5}.\sqrt{5}.\sqrt{7}+\sqrt{7}.\sqrt{7}.\sqrt{5}}{\sqrt{35}}.\)
\(=\frac{\sqrt{5}.\sqrt{35}+\sqrt{7}.\sqrt{35}}{\sqrt{35}}\)
\(=\frac{\sqrt{35}\left(\sqrt{5}+\sqrt{7}\right)}{\sqrt{35}}=\sqrt{5}+\sqrt{7}\)
1) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
Xin lỗi xin lỗi :v
1)\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
= \(\sqrt{7}.\left(3\sqrt{7}-2\sqrt{14}\right)+14\sqrt{2}\)
= 21 - \(14\sqrt{2}+14\sqrt{2}\)
= 21
2) \(\left(\sqrt{8}-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{18}-\sqrt{8}+\sqrt{5}\right)\)
= \(\left(2\sqrt{2}-\sqrt{2}-\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{5}-2\sqrt{2}\right)\)
= \(\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)\)
=\(\left(\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2\)
= -3