Cho \(\hept{\begin{cases}a,b,c>0\\a^2+b^2+c^2=1\end{cases}}\)Tìm Min \(B=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C
Tam giác ABC vuông tại A có \(cotgB=\frac{5}{8}\)
\(\Rightarrow\frac{AB}{AC}=\frac{5}{8}\Rightarrow\frac{5}{AC}=\frac{5}{8}\Rightarrow AC=8\left(cm\right)\)
\(BC^2=AB^2+AC^2=5^2+8^2=89\)
\(\Rightarrow BC=\sqrt{89}\left(cm\right)\)
Tự vẽ hình nha
Ta có : cotB = 5858 =ABAC=ABAC
=> AB = 5(cm)
AC = 8(cm)
Áp dụng định lý Py-ta-go vào △ABC△ABC vuông tại A , có :
BC2=AB2+AC2BC2=AB2+AC2
⇔⇔ BC2=52+82BC2=52+82
⇔⇔ BC2=25+64BC2=25+64
⇔⇔ BC2=89BC2=89
⇒⇒ BC=√89BC=89 (cm)
Giải phương trình sau:
√3x2−5x+1−√x2−2=√3(x2−x−1)−√x2−3x+4
ĐKXD: \(3x^2-7x+5\ge0;x^2-x+4\ge0;3x^2-5x+1\ge0\)
Phương trình tương đương
\(\sqrt{3x^2-7x+5}-\sqrt{3x^2-5x+1}=\sqrt{x^2-2}-\sqrt{x^2-x+4}\)
\(\left(=\right)\frac{-2\left(x-2\right)}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}=\frac{x-2}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\)
\(\left(=\right)\left(x-2\right)\left(\frac{-2}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}-\frac{1}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\right)=0\)
Dễ đàng đánh giá Trường hợp còn lại nhỏ hơn 0. Từ đó suy ra x=2(thỏa)
#)Giải :
\(\left(x+\sqrt{x^2+2019}\right)\left(x+\sqrt{y^2+2019}\right)=2019\)
\(\Leftrightarrow x^2+2019-x^2=2019\)
\(\Leftrightarrow\sqrt{x^2+2019}-x=\sqrt{y^2+2019}+y\)
\(\Leftrightarrow x+y=\sqrt{x^2+2019}-\sqrt{y^2+2019}\left(1\right)\)
\(\left(\sqrt{x^2+2019}+y\right)\left(\sqrt{y^2+2019}-y\right)=2019\)
\(\Leftrightarrow\sqrt{y^2+2019}-y=\sqrt{x^2+2019}+x\)
\(\Leftrightarrow x+y=\sqrt{y^2+2019}-\sqrt{x^2+2019}\left(2\right)\)
Cộng hai vế (1) và (2) với nhau. ta được :
\(2\left(x+y\right)=0\Leftrightarrow x+y=0\)
|*Đúng k nhỉ ???*|
#)Giải :
A B C H
Lưu ý : Hình ảnh chỉ mang tính chất minh họa, không đúng 100% về kích thước
Áp dụng hệ thức lượng vào tam giác vuông ABC :
\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{576}\)
Mà \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
\(\Rightarrow\hept{\begin{cases}AB=30cm\\AC=40cm\end{cases}}\)
Áp dụng định lí Py - ta - go :
\(BC^2=AB^2+AC^2\Rightarrow BC^2=30^2+40^2=2500\Rightarrow BC=\sqrt{2500}=50\)
Tiếp tục áp dụng hệ thức lượng :
\(\Rightarrow\hept{\begin{cases}BH.BC=AB^2\\CH.BC=AC^2\end{cases}\Rightarrow\hept{\begin{cases}BH=18cm\\CH=32cm\end{cases}}}\)
Vậy BH = 18cm ; CH = 32cm
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1+\sqrt{x}}\left(x\ge0;x\ne1\right)\)
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(x+2\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+x\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}+2\sqrt{x}+x+2+x\sqrt{x}-\sqrt{x}+x-1+x\sqrt{x}-1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3x\sqrt{x}+\sqrt{x}+2x}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
_Ko chắc>
_Y nguyệt_
Em không chắc đâu nha, sai thì xin thông cảm cho ạ
\(a=b=c=\frac{\sqrt{3}}{3}\Rightarrow B=\frac{3\sqrt{3}}{2}\). Ta se chung minh do la gia tri min cua B. That vay:
\(BĐT\Leftrightarrow\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}}{2}=\frac{3\sqrt{3}}{2\sqrt{a^2+b^2+c^2}}\)
BĐT trên đồng bậc, nên ta chuẩn hóa a2 + b2 + c2 = 3 và chứng minh:
\(\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{3}{2}\) (2)
Ta chứng minh BĐT sau: \(\frac{a}{3-a^2}\ge\frac{1}{2}a^2\Leftrightarrow\frac{a^2}{2}-\frac{a}{3-a^2}\le0\)
\(\Leftrightarrow\frac{-\left(a-1\right)^2a\left(a+2\right)}{2\left(3-a^2\right)}\le0\) (Đúng)
Tương tự với hai BĐT còn lại và cộng theo vế suy ra BĐT (2) là đúng.
Suy ra BĐT (1) là đúng suy ra \(B_{min}=\frac{3\sqrt{3}}{2}\)
Vậy...
Xét \(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)
<=> \(a^4-a^2+\frac{2\sqrt{3}}{9}a\ge0\)
<=> \(a\left(a+\frac{2\sqrt{3}}{3}\right)\left(a-\frac{\sqrt{3}}{3}\right)^2\ge0\)luôn đúng
=> \(B\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)
Min \(B=\frac{3\sqrt{3}}{2}\)khi \(a=b=c=\frac{\sqrt{3}}{3}\)