Tìm đa thức f(x) biết rằng f(x):x+2 dư 10, chia cho x-2 dư 24, chia cho \(x^2-4\)được thương là -5x và còn dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4(x−5)−(3x−1)=x−19
⇒4x−20−3x+1=x−19
⇒4x−3x−x=−19+20−1
⇒0x=0
⇒x∈R
Chúc bạn học tốt nhé! ^^
\(\text{4(x-5)-(3x-1)=x-19}\)
\(4x-20-3x+1=x-19\)
\(4x-3x-x=-19-1+20\)
\(0=0??\)
4(x−5)−(3x−1)=x−194(x−5)−(3x−1)=x−19
⇒4x−20−3x+1=x−19⇒4x−20−3x+1=x−19
⇒4x−3x−x=−19+20−1⇒4x−3x−x=−19+20−1
⇒0x=0⇒0x=0
⇒x∈R⇒x∈R
Chúc bạn học tốt nhé! ^^
\(x^2-2y^2-5=0\Rightarrow x^2=5+2y^2\)(1)
\(\Rightarrow\)x là số lẻ
Đặt x=2k+1 (k thuộc Z)
Khi đó: (1) \(\Leftrightarrow\left(2k+1\right)^2=5+2y^2\Leftrightarrow2y^2=4k^2+4k-4\)
\(\Leftrightarrow y^2=2\left(k^2+k-1\right)\)(2)
\(\Rightarrow\) y là số chẵn
Đặt \(y=2n\)\(\left(n\in Z\right)\)
khi đó:
(2) \(\Leftrightarrow4n^2=2\left(k^2+k-1\right)\Leftrightarrow2n^2+1=k\left(k+1\right)\)(3)
Xét (3) ta thấy: VT lẻ, VP chẵn ( do VP bằng tích hai số nguyên liên tiếp )
Do đó, phương trình vô nghiệm, ko có x,y nguyên thỏa mãn phương trình
Ta có: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a - 2√ab + b ≥ 0
<=> a + b ≥ 2√ab
<=> (a + b)/2 ≥ √ab
dau "=" xay ra khi √a - √b = 0 <=> a = b
\(a,\)\(đkxđ\)\(\hept{\begin{cases}3+2x\ne0\\3-2x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-\frac{3}{2}\\x\ne\frac{3}{2}\end{cases}}}\)
\(b,\)\(A=\left(\frac{1}{3+2x}+\frac{1}{3-2x}\right):\frac{1}{3+2x}\)
\(=\left(\frac{3-2x+3+2x}{\left(3-2x\right)\left(3+2x\right)}\right).\frac{3+2x}{1}\)
\(=\frac{6\left(3+2x\right)}{\left(3-2x\right)\left(3+2x\right)}=\frac{6}{3-2x}\)
\(c,\)Tại x = 3 \(\Rightarrow A=\frac{6}{3+2.3}=\frac{6}{9}=\frac{2}{3}\)
(3x-2) (9x+6x+4)-(3x-1) (9x+3x+1)=x-4
(3x - 2)(15x + 4) - (3x - 1)(12x + 1) = x - 4
<=> 45x2 + 12x - 30x - 8 - (36x2 + 3x - 12x - 1) - x + 4 = 0
<=> 9x2 - 10x - 3 = 0
<=> (3x - \(\frac{5}{3}\))2 = \(\frac{52}{9}\) => \(\orbr{\begin{cases}3x-\frac{5}{3}=\frac{2\sqrt{13}}{3}\\3x-\frac{5}{3}=-\frac{2\sqrt{13}}{3}\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{5+2\sqrt{13}}{9}\\x=\frac{5-2\sqrt{13}}{9}\end{cases}}\)
Vậy ...
Hình như bạn viết đề hơi ngược mình nghĩ là :
Cho a,b,c khác 0 Chứng minh rằng : \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
Áp dụng BĐT AM - GM ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2.\frac{a}{c}\)
Tương tự có : \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\cdot\frac{b}{a}\), \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\cdot\frac{c}{b}\)
Khi đó : \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
Hay : \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
A B C M E F N
a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90
=> BEMF là hình chữ nhật (dh)
b, MF _|_ BA
BC _|_ AB
=> MF // BC
M là trung điểm của AC (gt)
=> MF là đường trung bình của tam giác ABC (đl)
=> F là trung điểm của AB
F Là trung điểm của MN
=> BMAN là hình bình hành (dh)
MN _|_ AB
=> BMAN là hình thoi (dh)
c, MF là đtb của tam giác ABC (câu a)
=> MF = BC/2 ; BC = 4 (Gt)
=> MF = 2
tương tự tính ra BF = 1,5
=> S BEMF = 4.1,5 = 6
Lời giải:
Thực hiện phép biến đổi tương đương:
Ta có: a3+b3+abc≥ab(a+b+c)a3+b3+abc≥ab(a+b+c)
⇔a3+b3+abc−ab(a+b+c)≥0⇔a3+b3+abc−ab(a+b+c)≥0
⇔a3+b3−ab(a+b)≥0⇔a3+b3−ab(a+b)≥0
⇔a2(a−b)−b2(a−b)≥0⇔a2(a−b)−b2(a−b)≥0
⇔(a2−b2)(a−b)≥0⇔(a2−b2)(a−b)≥0
⇔(a−b)2(a+b)≥0⇔(a−b)2(a+b)≥0 (luôn đúng với mọi $a,b$ dương )
Do đó ta có đpcm.
Dấu bằng xảy ra khi a=b
Với a,b > 0 ta có BĐT :
\(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy : BĐT tương đương :
\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) ( đúng )
Áp dụng vào bài toán ta có :
\(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b\)