K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

\(\left(x+1\right)\left(2x-3\right)-x^2=\left(x-2\right)^2\)

\(\Leftrightarrow2x^2-3x+2x-3-x^2=x^2-4x+4\)

\(\Leftrightarrow x^2-x-3-x^2+4x-4=0\)

\(\Leftrightarrow3x-7=0\)

\(\Leftrightarrow3x=7\)

\(\Leftrightarrow x=\frac{7}{3}\)

6 tháng 9 2020

( x + 1 )( 2x - 3 ) - x2 = ( x - 2 )2

<=> 2x2 - x - 3 - x2 = x2 - 4x + 4

<=> 2x2 - x - x2 - x2 + 4x = 4 + 3

<=> 3x = 7

<=> x = 7/3

Vậy S = { 7/3 }

7 tháng 9 2020

\(\frac{2013n^2+3}{8}\inℤ\Leftrightarrow2013n^2+3⋮8\Leftrightarrow8.251.n^2+5n^2+3⋮8\)

Vì \(8.251.n^2⋮8\) nên  \(5n^2+3⋮8\Leftrightarrow5n^2+3-8⋮8\Leftrightarrow5\left(n^2-1\right)⋮8\)

Vì 5 và 8 là 2 số nguyên tố cùng nhau nên \(n^2-1⋮8\Leftrightarrow\left(n-1\right)\left(n+1\right)⋮8\)

Vì các số nguyên tố lớn hơn 2 đều lẻ nên sẽ có dạng (4k+1) hoặc (4k+3), k là số tự nhiên

\(\Rightarrow\left(n-1\right)\left(n+1\right)=\orbr{\begin{cases}\left[\left(4k+1\right)-1\right]\left[\left(4k+1\right)+1\right]=4k\left(4k+2\right)⋮8\\\left[\left(4k+3\right)-1\right]\left[\left(4k+3\right)+1\right]=\left(4k+2\right)\left(4k+4\right)⋮8\end{cases}}\)

(Vì (4k+2) là số chẵn và (4k), (4k+4) đều chia hết cho 4 nên tích của chúng chia hết cho 8)                     ---->đpcm

6 tháng 9 2020

a) \(2\left(x-1\right)^2+\left(x+3\right)^2=3\left(x-2\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)

\(\Leftrightarrow5x=-17\)

\(\Rightarrow x=-\frac{17}{5}\)

b) \(\left(x+2\right)^2-2\left(x-3\right)=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+4x+4-2x+6=x^2+2x+1\)

\(\Leftrightarrow10=1\)

=> vô nghiệm 

c) \(\left(x-1\right)^2+\left(x-2\right)^2=2\left(x+4\right)^2-\left(22x+27\right)\)

\(\Leftrightarrow x^2-2x+1+x^2-4x+4=2x^2+8x+8-22x-27\)

\(\Leftrightarrow8x=-24\)

\(\Rightarrow x=-3\)

6 tháng 9 2020

a) 2( x - 1 )2 + ( x + 3 )2 = 3( x - 2 )( x + 1 )

<=> 2( x2 - 2x + 1 ) + x2 + 6x + 9 = 3( x2 - x - 2 )

<=> 2x2 - 4x + 2 + x2 + 6x + 9 = 3x2 - 3x - 6

<=> 2x2 - 4x + x2 + 6x - 3x2 + 3x = -6 - 2 - 9

<=> 5x = -17

<=> x = -17/5

b) ( x + 2 )2 - 2( x - 3 ) = ( x + 1 )2

<=> x2 + 4x + 4 - 2x + 6 = x2 + 2x + 1

<=> x2 + 4x - 2x - x2 - 2x = 1 - 4 - 6

<=> 0x = -9 ( vô lí )

Vậy phương trình vô nghiệm

c) ( x - 1 )2 + ( x - 2 )2 = 2( x + 4 )2 - ( 22x + 27 )

<=> x2 - 2x + 1 + x2 - 4x + 4 = 2( x2 + 8x + 16 ) - 22x - 27

<=> 2x2 - 6x + 5 = 2x2 + 16x + 32 - 22x - 27

<=> 2x2 - 6x - 2x2 - 16x + 22x = 32 - 27 - 5

<=> 0x = 0 ( đúng ∀ x ∈ R )

Vậy phương trình nghiệm đúng ∀ x ∈ R

5 tháng 9 2020

Vì \(\left(x^2-2^2\right)^2\ge0\Rightarrow\left(x^2-2^2\right)^2+2010\ge2010\)

                                    \(\Leftrightarrow\frac{\left(x^2-2^2\right)+2010}{-2009}\le\frac{2010}{-2009}\)

Vậy Dmax=-2010/2009, dấu = xảy ra khi và chỉ khi \(x^2-2^2=0\Leftrightarrow x=\pm2\)

5 tháng 9 2020

a) VT = x3 + 3x2y + 3xy2 + y3 + x3 - 3x2y + 3xy2 - y3

          = 2x3 + 6xy2

          = 2x( x2 + 3y2 ) = VP

=> đpcm

b) VT = x3 + 3x2y + 3xy2 + y3 - ( x3 - 3x2y + 3xy2 - y3 )

          = x3 + 3x2y + 3xy2 + y3 - x3 + 3x2y - 3xy2 + y3

          = 3x2y + 2y3

          = 2y( 3x2 + y2 ) = VP

=> đpcm

5 tháng 9 2020

a)

 \(VT=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=2x\left[x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right]\)

\(=2x\left(x^2+3y^2\right)=VP\)

b)

\(VT=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)=VP\)

6 tháng 9 2020

Ta có: \(D=\frac{\left(x^2-2^2\right)+2010}{-2009}=\frac{x^2+2006}{-2009}=\frac{3-x^2}{2009}-1\)

Để D đạt GTLN => \(\frac{3-x^2}{2009}\) đạt GTLN, mà \(3-x^2\le3\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x=0\)

Vậy Max(D) = \(-\frac{2006}{2009}\) khi x = 0

7 tháng 9 2020

mình ghi sai đề nha

5 tháng 9 2020

Ta có :

\(VP=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=VT\)

\(\RightarrowĐPCM\)

5 tháng 9 2020

VT = x3 + y3 ( HĐT số 6 )

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

= ( x + y )3 - 3xy( x + y ) = VP

=> đpcm

5 tháng 9 2020

B=\(\frac{2011-x}{11-x}\) nha ghi sai

5 tháng 9 2020

Ta có: 

\(B=\frac{2011-x}{11-x}=\frac{2000+\left(11-x\right)}{11-x}=1+\frac{2000}{11-x}\)

Để B đạt GTLN

=> \(\frac{2000}{11-x}\) đạt GTLN

Mà x nguyên nên dấu "=" xảy ra khi: \(11-x=1\Rightarrow x=10\)

Vậy Max(B) = 2001 khi x = 10

5 tháng 9 2020

Sửa đề : x3 + y3 - xy( x + y ) = ( x + y )( x - y )2

x3 + y3 - xy( x + y )

= x3 + y3 - x2y - xy2

= x3 + 3x2y + 3xy2 + y3 - 4x2y - 4xy2

= ( x3 + 3x2y + 3xy2 + y3 ) - 4xy( x + y )

= ( x + y )3 - 4xy( x + y )

= ( x + y )[ ( x + y )2 - 4xy ]

= ( x + y )( x2 + 2xy + y2 - 4xy )

= ( x + y )( x2 - 2xy + y2 )

= ( x + y )( x - y )2

=> đpcm

5 tháng 9 2020

Bị tự tin quá khả năng nhẩm mồm, sai em xin lỗi ...

a, Ta có \(P\left(x\right)=8x^3+2x^2-3x-3x^3+10-x-2x^2-3\)

\(=5x^3-4x-7\)

\(Q\left(x\right)=9x^3-4x^2+2x-3+2x+3x^2+4x^3-2\)

\(=13x^3-x^2+4x-5\)

b, Ta có : \(P\left(-\frac{1}{2}\right)=5.\left(-\frac{1}{2}\right)^3-4.\left(-\frac{1}{2}\right)-7=-\frac{45}{8}\)

c , \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

  \(5x^3-4x-7+13x^3-x^2+4x-5=18x^3-x^2-12\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(5x^3-4x-7-13x^3+x^2-4x+5=-8x^3-8x-2+x^2\)

d, Đặt \(5x^3-4x-7=0\)( vô nghiệm )