Cho a,b\(\in\)Z+ thỏa mãn a2+b2\(⋮\)ab. Tính giá trị của biểu thức :
A=\(\frac{a^2+b^2}{2ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần các cao nhân giải khác phương pháp SS
Không làm theo cách đánh giá 3(a2b+b2c+c2a)\(\le\)(a+b+c)(a2+b2+c2)=3(a2+b2+c2)
Ai làm được xin cảm ơn trước
#)Giải :
Ta có : \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Áp dụng BĐT Cauchy :
\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)
Đặt \(t=a^2+b^2+c^2\Rightarrow t\ge3\)
\(\Rightarrow P\ge t+\frac{9-t}{2t}=\frac{t}{2}+\frac{9}{2t}+\frac{t}{2}-\frac{1}{2}\ge3+\frac{3}{2}-\frac{1}{2}=4\)
\(\Rightarrow P\ge4\Rightarrow P_{min}=4\)
Dấu ''='' xảy ra khi a = b = c = 1
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}-1-\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)+\sqrt{x^3+x^2+x+1}\left(1-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)-\sqrt{x^3+x^2+x+1}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(1-\sqrt{x^3+x^2+x+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}-1=0\\1-\sqrt{x^3+x^2+x+1}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x\left(x^2+x+1\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\left(because:x^2+x+1>0with\forall x\right)\end{cases}}\)
\(A=x-\sqrt{x}-2=\left(\sqrt{x}\right)^2-2.\sqrt{x}.\frac{1}{2}+\left(\frac{1}{2}\right)^2-2,25=\left(\sqrt{x}-\frac{1}{2}\right)^2-2,25\ge2,25\forall x\ge0\)
ĐK: \(x\ge-2\)
\(B=x-\sqrt{x+2}=x+2-2.\sqrt{x+2}.\frac{1}{2}+\left(\frac{1}{2}\right)^2-2,25=\left(\sqrt{x+2}-\frac{1}{2}\right)^2-2,25\ge-2,25\forall x\ge-2\)........
ĐKXĐ: \(x\ne\pm2y\)
Đặt \(\hept{\begin{cases}\frac{1}{x+2y}=a\\\frac{1}{x-2y}=b\end{cases}\left(a;b\ne0\right)}\)
\(\Rightarrow\hept{\begin{cases}4a-b=1\\20a+3b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{8}\\b=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2y=8\\x-2y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=\frac{5}{2}\end{cases}}\)
Vì a2 + b2 \(⋮\)ab
=> a2 + b2 = ab.k
Thay vào biểu thức ta có :
\(A=\frac{a^2+b^2}{2ab}=\frac{ab.k}{2.ab}=\frac{k}{2}\)
Vậy \(A=\frac{k}{2}\)