a, (x-1)3 - x(x-1)2 = 5(2-x) - 11(x+2)
b, (x-2)3 + (3x-1)(3x+1) = (x+1)3
c, 2x−15−x−23=x+752x−15−x−23=x+75
d, 2(x−3)7+x−53=13x+4212(x−3)7+x−53=13x+421
e, (x+10)(x+4)12−(x+4)(2−x)4=(x+10)(x−2)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+2\right)\cdot\left(x^2+1\right)=0\)
\(\Leftrightarrow2x+2=0\left(\text{vì }x^2+1\ne0\right)\)
\(\Leftrightarrow2x=-2\text{ }\Leftrightarrow x=-1\)
\(\text{Vậy S}=\left\{-1\right\}\)
P=9xy+10yz+11zx=9xy+z(10y+11x)=9xy(1-x-y)(10y+11x)
khai triển và rút gọn ta được :
\(P=-11x^2-10y^2+11x+10y-12xy\)
tương đương với :
\(11x^2+\left(12y-11\right)x+10y^2-10y+P\ge0\)(1)
Coi đây là tam thức bậc 2 ẩn x do đk của x => (1) phải có nghiệm hay
\(\Delta-\left(12y-11\right)^2-44\left(10y^2-10y+P\right)\ge0\)
Hay \(-296y^2+176y+121-44P\ge0\)
tương đương với
\(P\le-\frac{74}{11}\left(y^2-\frac{22}{37}y-\frac{121}{296}\right)\)
dùng phép tách thành bình phương ; ta dễ thấy :
\(y^2-\frac{22}{37}y-\frac{121}{296}\ge-\frac{5445}{10952}\)
=> \(P\le\left(\frac{74}{-11}\right).\left(-\frac{5445}{10952}\right)-\frac{495}{148}\)
vậy \(MaxP=\frac{495}{148}\)đạt được khi \(y=\frac{11}{37};x=\frac{25}{74};z=\frac{27}{74}\)
(2x + 1)(3x + 3) = 0
<=> 2x + 1 = 0 hoặc 3x + 3 = 0
<=> x = -1/2 hoặc x = -1
\(\left(2x+1\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-1\\3x=-3\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)
Vậy ...
\(\frac{x^3+x^2-x-1}{x^3+2x-5}\)
\(\Leftrightarrow\frac{x^3+x^2-x-1}{x^3+2x-5}=0\)
\(\Leftrightarrow\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x^2-1^2\right)}{x^3+2x-5}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+1\right)\left(x+1\right)}{x^3+2x-5}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2\left(x-1\right)}{x^3+2x-5}=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-1\right)=0\)
\(\Leftrightarrow x=\pm1\)
Vậy \(x\in\left\{\pm1\right\}\)
\(\frac{x^3+x^2-x-1}{x^3+2x-5}=\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}\)
\(=\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}\)
Để \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\Leftrightarrow\left(x-1\right)\left(x^2-1\right)=0\left(x^3+2x-5\ne0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=1\end{cases}\Leftrightarrow x=\pm}\)
Vậy x={-1;1}
1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)
<=> 21x - 100x + 900 = 80x + 6
<=> -79x - 80x = 6 - 900
<=> -159x = -894
<=> x = 258/53
Vậy S = {258/53}
2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)
<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5
<=> 7x2 + 2x - 7x2 + 14x = -5 + 2
<=> 16x = 3
<=> x = 3/16
Vậy S = {3/16}
3) 4(3x - 2) - 3(x - 4) = 7x+ 10
<=> 12x - 8 - 3x + 12 = 7x + 10
<=> 9x - 7x = 10 - 4
<=> 2x = 6
<=> x = 3
Vậy S = {3}
4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)
<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80
<=> 4x2 + 20x - 4x2 - 32x = -80 - 16
<=> -12x = -96
<=> x = 8
Vậy S = {8}
Câu 2: 6x2 + 7x - 3
= 6x2 + 9x - 2x - 3
= 3x(2x +3) - (2x + 3)
= (3x - 1)(2x + 3)