Bài 5. Cho biểu thức A = n - 3/n + 1
a ) Tìm điều kiện của số nguyên n để A là phân số
b) Tìm số nguyên n để A có giá trị là số nguyên
Giúp mik ik
Mik kb nnha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABC có
BN,CM là các đường trung tuyến
BN cắt CM tại D
Do đó: D là trọng tâm của ΔABC
=>\(BD=\dfrac{2}{3}BN;CD=\dfrac{2}{3}CM\)
BD=2/3BN
=>\(S_{ABD}=\dfrac{2}{3}\cdot S_{ABN}\left(1\right)\)
\(CD=\dfrac{2}{3}CM\)
=>\(S_{ADC}=\dfrac{2}{3}\cdot S_{AMC}\left(2\right)\)
Ta có: M là trung điểm của AB
=>\(S_{AMC}=\dfrac{1}{2}\cdot S_{ABC}\left(3\right)\)
Ta có: N là trung điểm của AC
=>\(S_{ABN}=\dfrac{1}{2}\cdot S_{ABC}\left(4\right)\)
Từ (1),(2),(3),(4) suy ra \(S_{ABN}=S_{ADC}\)
mà \(S_{MBN}=\dfrac{1}{2}\cdot S_{ANB}\)
và \(S_{MNC}=\dfrac{1}{2}\cdot S_{AMC}\)
nên \(S_{MBN}=S_{MNC}\)
=>\(S_{MBD}+S_{MDN}=S_{NDC}+S_{MDN}\)
=>\(S_{MBD}=S_{NDC}\)
2: \(S_{AMC}=\dfrac{1}{2}\cdot S_{ABC}=\dfrac{1}{2}\cdot30=15\left(cm^2\right)\)
=>\(S_{MNC}=\dfrac{1}{2}\cdot S_{AMC}=7,5\left(cm^2\right)\)
Vì CD=2/3CM
nên \(S_{CND}=\dfrac{2}{3}\cdot S_{CNM}=5\left(cm^2\right)\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{25^2}< \dfrac{1}{24\cdot25}=\dfrac{1}{24}-\dfrac{1}{25}\)
Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{25^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{25^2}< 1-\dfrac{1}{25}\)
=>\(1+\dfrac{1}{2^2}+...+\dfrac{1}{25^2}< 2-\dfrac{1}{25}\)
=>\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{25^2}\right)< \dfrac{1}{4}\left(2-\dfrac{1}{25}\right)=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
(27 x 45 + 27 x 55) : ( 2 + 4 + 6 + ... + 16 + 18)
= 27 x (45 + 55) : { (18 + 2) x [(18 - 2) : 2 + 1] : 2}
= 27 x 100 : {20 x [16 : 2 + 1] : 2}
= 2700 : {20 x [8 + 1]: 2}
= 2700 : {20 x 9 : 2}
= 2700 : 90
= 30
Xét phân số \(A=\dfrac{2n+5}{n+3}\)
\(A=\dfrac{2n+6-1}{n+3}=\dfrac{2\left(n+3\right)-1}{n+3}=\dfrac{2\left(n+3\right)}{n+3}-\dfrac{1}{n+3}=2-\dfrac{1}{n+3}\)
Để phân số A có giá trị là số nguyên => \(n+3\inƯ\left(1\right)=\left\{-1,1\right\}\)
- Với n + 3 = -1 => n = -4
- Với n + 3 = 1 => n= -2
Vậy với các giá trị \(n\in\left\{-4,-2\right\}\) thì phân số A có giá trị là số nguyên
\(n\in Z\)
Thì
2n+5n−3=2n−6+11n−3=2+11n−32𝑛+5𝑛−3=2𝑛−6+11𝑛−3=2+11𝑛−3
⇒2n+5n−3⇒2𝑛+5𝑛−3 nguyên thì 11n−311𝑛−3 nguyên
⇔n−3⇔𝑛−3 là ước của 11 là ±1;±11±1;±11
ta có * n−3=1⇔n=4(tmđk)𝑛−3=1⇔𝑛=4(𝑡𝑚đ𝑘)
* n−3=−1⇔n=2(tmđk)𝑛−3=−1⇔𝑛=2(𝑡𝑚đ𝑘)
* n−3=11⇔n=14(tmđk)𝑛−3=11⇔𝑛=14(𝑡𝑚đ𝑘)
* n−3=−11⇔n=−8(tmđk)𝑛−3=−11⇔𝑛=−8(𝑡𝑚đ𝑘)
vậy n=4;n=2;n=14;n=−8
Giải:
Số Hs khá của lớp 6A là :
\(45\times40\%=18\left(hs\right)\)
Số Hs trung bình của lớp 6A là :
\(18\times\dfrac{7}{9}=14\left(hs\right)\)
Số Hs giỏi của lớp 6A là :
\(45-\left(18+14\right)=13\left(hs\right)\)
Vậy số hs khá là : 18 hs ; số Hs trung bình là : 14 hs ; số hs giỏi là : 13 hs
Giải
Số HS khá là:
45 x 40% : 100% = 18 ( Học sinh)
Số HS trung bình là:
18 x 7 : 9 = 14 ( học sinh)
Số Học sinh giỏi là:
40 - 18 - 14 = 8 ( Học sinh)
Đs: ...
b; |\(x\) + 1| = 5
\(\left[{}\begin{matrix}x+1=-5\\x+1=5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5-1\\x=5-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-6\\x=4\end{matrix}\right.\)
Vậy \(x\in\) {-6; 4}
a) \(\dfrac{3}{15}\) - χ = \(\dfrac{2}{5}\) : \(\dfrac{1}{3}\)
\(\dfrac{3}{15}\) - x = \(\dfrac{6}{5}\)
X = \(\dfrac{6}{5}\) - \(\dfrac{3}{5}\)
X= \(\dfrac{3}{5}\)
B) X + 1 = 5
X= 5 - 1
X = 4
\(a,\dfrac{-6}{35}:\dfrac{-54}{49}\)
\(=\dfrac{-6}{35}\times\dfrac{49}{-54}\)
\(=\dfrac{-1}{5}\times\dfrac{7}{-9}\)
\(=\dfrac{-7}{-45}=\dfrac{7}{45}\)
\(b,\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.-\dfrac{9}{11}+1\dfrac{5}{7}\)
\(=\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}+\dfrac{12}{7}\)
\(=\dfrac{-5}{7}.\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\)
\(=\dfrac{-5}{7}.1+\dfrac{12}{7}\)
\(=\dfrac{-5}{7}+\dfrac{12}{7}=1\)
Gọi d = ƯCLN(2n + 3; 4n + 7)
⇒ (2n + 3) ⋮ d và (4n + 7) ⋮ d
*) (2n + 3) ⋮ d
⇒ 2(2n + 3) ⋮ d
⇒ (4n + 6) ⋮ d
Mà (4n + 7) ⋮ d (cmt)
⇒ (4n + 7 - 4n - 6) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy phân số đã cho là tối giản với mọi n là số nguyên
Bài 1:
a; (\(\dfrac{8}{19}\) + \(\dfrac{4}{21}\)) - 1\(\dfrac{3}{2020}\) - (\(\dfrac{27}{19}\) - \(\dfrac{17}{21}\))
= \(\dfrac{8}{19}\) + \(\dfrac{4}{21}\) - 1\(\dfrac{3}{2020}\) - \(\dfrac{27}{19}\) + \(\dfrac{17}{21}\)
= (\(\dfrac{8}{19}\) - \(\dfrac{27}{19}\)) + (\(\dfrac{4}{21}\) + \(\dfrac{17}{21}\)) - 1\(\dfrac{3}{2020}\)
= - \(\dfrac{19}{19}\) + \(\dfrac{21}{21}\) - 1\(\dfrac{3}{2020}\)
= -1 + 1 - 1\(\dfrac{3}{2020}\)
= 0 - 1\(\dfrac{3}{2020}\)
= -1\(\dfrac{3}{2020}\)
b; (\(\dfrac{-3}{4}\) + \(\dfrac{2}{5}\)): \(\dfrac{3}{7}\) + (\(\dfrac{3}{5}\) + \(\dfrac{-1}{4}\)): \(\dfrac{3}{7}\)
= (\(\dfrac{-3}{4}\) + \(\dfrac{2}{5}\)) x \(\dfrac{7}{3}\) + (\(\dfrac{3}{5}\) + \(\dfrac{-1}{4}\)) x \(\dfrac{7}{3}\)
= \(\dfrac{7}{3}\) x [ (\(-\dfrac{3}{4}\) + \(\dfrac{2}{5}\)) + (\(\dfrac{3}{5}\) + \(\dfrac{-1}{4}\))]
= \(\dfrac{7}{3}\) x [ - \(\dfrac{3}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\) - \(\dfrac{1}{4}\)]
= \(\dfrac{7}{3}\) x [- (\(\dfrac{3}{4}\) + \(\dfrac{1}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\))]
= \(\dfrac{7}{3}\) x [ - 1 + 1]
= \(\dfrac{7}{3}\) x 0
= 0
a: Để A là phân số thì \(n+1\ne0\)
=>\(n\ne-1\)
b: Để A là số nguyên thì \(n-3⋮n+1\)
=>\(n+1-4⋮n+1\)
=>\(-4⋮n+1\)
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)