tìm x,y,z biết x(x+3y+5z)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2 (a + b) = a - b
=> 2a + 2b = a - b
=> 2a - a = -b - 2b
=> a = -3b
=> a : b = -3
Vì a - b = 2 (a + b) = a : b nên ta có: 2 (a + b) = -3 và a - b = -3
=> a + b = -1,5 và a - b = -3 (*)
=> a + b + a - b = -1,5 - 3
=> 2a = -4,5
=> a = -2,25 (thỏa mãn a là số hữu tỉ)
Thay a = -2,25 vào (*) tao được:
-2,25 - b = -3
=> b = -2,25 + 3 = 0,75 (thỏa mãn b là số hữu tỉ)
Vậy a = -2,25 và b = 0,75.
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.
Ta có : \(\left(x^{2018}+3.x^{2017}-1\right)^{2018}\)
Thay \(x=-3\)vào ,ta được :
\([\left(-3\right)^{2018}+3.\left(-3\right)^{2017}-1]^{2018}\)
\(=\left(3^{2018}-3^{2018}-1\right)^{2018}\)
\(=\left(-1\right)^{2018}=1\)
a) Giả sử \(D\)không nằm giữa 2 điểm \(A\)và \(C\).
\(8=AC+BD\le CB=5\)(vô lí).
Do đó \(D\)nằm giữa 2 điểm \(A\)và \(C\).
b) \(AC+BD=AD+DC+BD=\left(AD+BD\right)+CD=AB+CD\)
\(\Rightarrow CD=AC+BD-AB=8-5=3\left(cm\right)\).
\(\frac{x+3}{x+1}+\frac{x-5}{x}=2\)(ĐK: \(x\ne-1,x\ne0\))
\(\Leftrightarrow\frac{x\left(x+3\right)+\left(x-5\right)\left(x+1\right)}{x\left(x+1\right)}=2\)
\(\Rightarrow x^2+3x+x^2-4x-5=2x\left(x+1\right)\)
\(\Leftrightarrow-3x-5=0\)
\(\Leftrightarrow x=-\frac{5}{3}\)(thỏa).
\(\frac{x+3}{x+1}+\frac{x-5}{x}=2ĐK:x\ne0;-1\)
\(\Leftrightarrow\frac{\left(x+3\right)x}{x\left(x+1\right)}+\frac{\left(x-5\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)
Khử mẫu : \(x^2+3x+x^2+x-5x-5=2x^2+2x\)
\(\Leftrightarrow2x^2-x-5=2x^2+2x\Leftrightarrow-3x-5=0\Leftrightarrow x=-\frac{5}{3}\)
Lùi vô hạn đây rồi:))
G/s \(\left(x;y;z;t\right)=\left(x_1;y_1;z_1t_1\right)\) là 1 nghiệm nguyên của phương trình
Khi đó ta có: \(8x_1^4+4y_1^4+2z_1^4=t_1^4\) (1)
Vì VT(1) chẵn => t14 chẵn => t1 chẵn => Đặt \(t_1=2t_2\left(t_2\inℤ\right)\)
Khi đó PT(1) trở thành: \(8x_1^4+4y_1^4+2z_1^4=16t_2^4\Leftrightarrow4x_1^4+2y_1^4+z_1^4=8t_2^4\) (2)
Tương tự khi đó z1 chẵn => Đặt \(z_1=2z_2\left(z_2\inℤ\right)\)
Khi đó PT(2) trở thành: \(4x_1^4+2y_1^4+16z_2^4=8t_2^4\Leftrightarrow2x_1^4+y_1^4+8z_2^4=4t_2^4\) (3)
=> y1 chẵn => Đặt \(y_1=2y_2\left(y_2\inℤ\right)\) Khi đó PT (3) trở thành:
\(2x_1^4+16y_2^4+8z_2^4=4t_2^4\Leftrightarrow x_1^4+8y_2^4+4z_2^4=2t_2^4\) (4)
=> x1 chẵn => Đặt \(x_1=2x_2\left(x_2\inℤ\right)\) Khi đó PT (4) trở thành:
\(16x_2^4+8y_2^4+4z_2^4=2t_2^4\Leftrightarrow8x_2^4+4y_2^4+2z_2^4=t_2^4\) (5)
Từ đó ta lại có: \(\left(x;y;z;t\right)=\left(x_2;y_2;z_2;t_2\right)\) cũng là 1 nghiệm của PT
Cứ như vậy đến một lúc nào đó \(\left(x;y;z;t\right)=\left(x_n;y_n;z_n;t_n\right)\) cũng là 1 nghiệm của PT
(Với n là số tự nhiên, \(\left(x_n;y_n;z_n;t_n\right)=\left(\frac{x_1}{2^{n-1}};\frac{y_1}{2^{n-1}};\frac{z_1}{2^{n-1}};\frac{t_1}{2^{n-1}}\right)\) và n tùy ý)
Khi đó ta thấy PT chỉ có 1 nghiệm duy nhất thỏa mãn tính vô hạn của phương trình đó là: \(x=y=z=t=0\)
Vậy x = y = z = t = 0
Giả sử phương trình có nghiệm \(\left(x_0,y_0,z_0,t_0\right)\).
Ta có: \(8x_0^4+4y_0^4+2z_0^4=t_0^4\)
có \(VT⋮2\Rightarrow t_0^4⋮2\Rightarrow t_0⋮2\Rightarrow t_0=2t_1\)
\(8x_0^4+4y_0^4+2z_0^4=\left(2t_1\right)^4=16t_1^4\)
\(\Leftrightarrow8t_1^4-4x_0^4-2_0^4=-z_0^4\)
có \(VT⋮2\Rightarrow z_0^4⋮2\Rightarrow z_0⋮2\Rightarrow z_0=2z_1\)
\(8t_1^4-4x_0^4-2y_0^4=-z_0^4=-\left(2z_1\right)^4=-16z_1^4\)
\(\Leftrightarrow8z_1^4+4t_1^4-2x_0^4=y_0^4\)
có \(VT⋮2\Rightarrow y_0^4⋮2\Rightarrow y_0⋮2\Rightarrow y_0=2y_1\)
\(8z_1^4+4t_1^4-2x_0^4=y_0^4=\left(2y_1\right)^2=16y_1^4\)
\(\Leftrightarrow-8y_1^4+4z_1^4+2t_1^4=x_0^4\)
có \(VT⋮2\Rightarrow x_0^4⋮2\Rightarrow x_0⋮2\Rightarrow x_0=2x_1\)
\(-8y_1^4+4z_1^4+2t_1^4=x_0^4=\left(2x_1\right)^4=16x_1^4\)
\(\Leftrightarrow8x_1^4+4y_1^4-2z_1^4=t_1^4\)
có \(VT⋮2\Rightarrow t_1^4⋮2\Rightarrow t_1⋮2\Rightarrow t_2=2t_1\)
Cứ tiếp tục như trên. Nếu \(\left(x_0,y_0,z_0,t_0\right)\)là một nghiệm thì \(\left(x_1,y_1,z_1,t_1\right)\)cũng là một nghiệm.
Như vậy \(x,y,z,t\)chia hết cho \(2^k\)với \(k\)bất kì. Điều này chỉ đúng với \(x=y=z=t=0\).
Ta có : \(7|2x+\frac{3}{4}|+|y-\frac{1}{2}|^{2019}+5|2x+3y-z|\le0\left(1\right)\)
Vì \(\hept{\begin{cases}|2x+\frac{3}{4}|\ge0\forall x\\|y-\frac{1}{2}|\ge0\forall y\\|2x+3y-z|\ge0\forall x,y,z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7|2x+\frac{3}{4}|\ge0\forall x\\|y-\frac{1}{2}|^{2019}\ge0\forall y\\5|2x+3y-z|\ge0\forall x,y,z\end{cases}}\)
\(\Rightarrow7|2x+\frac{3}{4}|+|y-\frac{1}{2}|^{2019}+5|2x+3y-z|\ge0\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\):
\(\Rightarrow7|2x+\frac{3}{4}|+|y-\frac{1}{2}|^{2019}+5|2x+3y-z|=0\)
\(\Rightarrow\hept{\begin{cases}|2x+\frac{3}{4}|=0\\|y-\frac{1}{2}|=0\\|2x+3y-z|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x+\frac{3}{4}=0\\y-\frac{1}{2}=0\\2x+3y-z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\y=\frac{1}{2}\\2.\left(-\frac{3}{8}\right)+3.\frac{1}{2}-z=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\y=\frac{1}{2}\\\frac{3}{4}-z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\y=\frac{1}{2}\\z=\frac{3}{4}\end{cases}}\)
Vậy \(x=-\frac{3}{8};y=\frac{1}{2};z=\frac{3}{4}\)