Giải và biện luận phương trình
\(\frac{x-m}{x+5}\) + \(\frac{x-5}{x+m}\) = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)
\(\Leftrightarrow\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x}{2\left(x+1\right)\left(x-3\right)}+\frac{x^2-3x}{2\left(x+1\right)\left(x-3\right)}-\frac{4x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x^2-6x}{2\left(x+1\right)\left(x-3\right)}=\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{2x}{2\left(x+1\right)}=0\)
=> 2x=0
=> x=0(tmđk)
Vậy x=0 là nghiệm của phương trình
\(\frac{2x-8}{6}-\frac{3x-1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\)
\(\Leftrightarrow\frac{2x-8}{6}-\frac{3x-1}{4}-\frac{9x-2}{8}-\frac{3x-1}{12}=0\)
\(\Leftrightarrow\frac{4\left(2x-8\right)}{24}-\frac{6\left(3x-1\right)}{24}-\frac{3\left(9x-2\right)}{24}-\frac{2\left(3x-1\right)}{24}=0\)
\(\Leftrightarrow\frac{8x-32-18x+6-27x+6-6x+2}{24}=0\)
\(\Leftrightarrow\frac{-43x-18}{24}=0\)
\(\Rightarrow-43x-18=0\)
\(\Leftrightarrow-43x=18\)
\(\Leftrightarrow x=\frac{-18}{43}\)
Vậy...
Đề sai rồi bạn ơi! "Tam giác ABC" không phải "tam giác ABCD"
\(x^2+y^2+z^2+t^2\ge x\left(y+z+t\right)\)
\(\Leftrightarrow x^2+y^2+z^2+t^2\ge xy+xz+xt\)
\(\Leftrightarrow4x^2+4y^2+4z^2+4t^2\ge4xy+4xz+4xt\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+a^2\ge0\)
(BĐT luôn đúng) => ĐPCM
Nguồn: vothutrang271
A B C M D E
a) Ta có MD là phân giác \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{BD}=\frac{AM}{BM}\left(1\right)\)
ME là phân giác \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{CE}=\frac{AM}{CM}\left(2\right)\)
Mà MB=MC (AM là trung tuyến)\(\Rightarrow\frac{AM}{BM}=\frac{AM}{MC}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\)=> DE//BC (định lý Talet đào) (đpcm)
Nguồn: Tuyết Nhi Melody
Khi BC cố định và AH không đổi thì DE không đổi. Mà MD vuông góc ME. Suy ra MI = DE/2 không đổi. Vậy I chạy trên đường tròn tâm M đường kính DE. Giới hạn tại đoạn BC
\(x\left(x-1\right)=x\left(x+3\right)\)
\(x^2-x=x^2+3x\)
\(x^2+x-x^2-3x=0\)
\(-2x=0\)
\(x=0\)
\(\left(x-1\right)\left(x+3\right)=x^2-4\)
\(x^2+3x-x-3=x^2-4\)
\(x^2+2x-3=x^2-4\)
\(x^2+2x-3-x^2+4=0\)
\(2x+1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
cj lm nốt nha , cj lm ms ý nghĩa , cố lên !
2x-(2-5x)=4(x+3)
2x - 2 + 5x = 4x + 12
2x + 5x - 4x = 12+2
3x = 14
x = \(\frac{14}{3}\)
hok tốt!!
A. 3x-2=2x-3
3x - 2x = -3 +2
x = -1
B.2x+3=5x+9
2x - 5x = 9 - 3
-3x = 6
x = 2
C.5-2x=7
2x = - 2
x = -1
D.10x+3-5x=4x+12
10x - 5x -4x = 12 -3
x = 9
E.11x+42-2x=100-9x-22
11x - 2x + 9x = 100 - 22 - 42
18x = 36
x = 2
F.2x-(3-5x)=4(x+3)
2x - 3 + 5x = 4x + 12
2x + 5x - 4x = 12 +3
3x = 15
x = 5
G.x(x+2)=x(x+3)
x^2 + 2x = x^2 + 3x
2x = 3x
x = 0
H. 2(x-3) + 5x(x-1)= 5x2
2x - 6 + 5x2 - 5x= 5x2
-6 + 5x2 - 5x2 = -2x + 5x
-6= 3x
x=-2
giúp mik vs