K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Link đây bạn xem thử

https://www.google.com/search?sxsrf=ALeKk000ftx557H7QV3mBjlHBDDRymSGFQ%3A1586183472602&ei=MD2LXoS4JM3EmAXR5YT4Dg&q=Cho+ba+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-x+%2B+1%2C+y+%3D+x+%2B+1+v%C3%A0+y+%3D+-1.+V%E1%BA%BD+ba+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+%C4%91%C3%A3+cho+tr%C3%AAn+c%C3%B9ng+m%E1%BB%99t+h%E1%BB%87+tr%E1%BB%A5c+t%E1%BB%8Da+%C4%91%E1%BB%99+Oxy.+G%E1%BB%8Di+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-x+%2B+1+v%C3%A0+y+%3D+x+%2B+1+l%C3%A0+A%2C+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-1+v%E1%BB%9Bi+hai+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-x+%2B+1+v%C3%A0+y+%3D+x+%2B+1+theo+th%E1%BB%A9+t%E1%BB%B1+l%C3%A0+B+v%C3%A0+C.+T%C3%ACm+t%E1%BB%8Da+%C4%91%E1%BB%99+c%C3%A1c+%C4%91i%E1%BB%83m+A%2C+B%2C+C.+Tam+gi%C3%A1c+ABC+l%C3%A0+tam+gi%C3%A1c+g%C3%AC%3F+T%C3%ADnh+di%E1%BB%87n+t%C3%ADch+tam+gi%C3%A1c+ABC

Học tốt

6 tháng 4 2020

khó thế

13 tháng 4 2020

Mình làm được rồi nha

 
2 tháng 4 2020

B H C F N M E

a) \(\hept{\begin{cases}\widehat{HFE}=\widehat{HAE}\\\widehat{HAE}+\widehat{ABH}=90^O\end{cases}\Rightarrow\widehat{HFE}+\widehat{ABH}=90^O}\)

=> \(\widehat{HFE}+\widehat{ABC}=90^O\)(đpcm) 

b) AEHF nội tiếp => \(\widehat{AEF}=\widehat{AHF}\)

Mà \(\widehat{AHF}=\widehat{ACB}\)( cùng phụ với \(\widehat{HAC}\)

=> \(\widehat{AEF}=\widehat{ACB}\)

=> BEFC là tứ giác nội tiếp 

\(\Rightarrow\hept{\begin{cases}\widehat{EBF}=\widehat{FCE}\\\widehat{BEM}=\widehat{NFC}=90^O\end{cases}\Rightarrow\widehat{EMB}=\widehat{FNC}}\)

\(\Rightarrow\widehat{EMF}=\widehat{ENF}\)

=> EMNF là tứ giác nội tiếp

=> góc ENM = góc EFB 

Mà BEFC nội tiếp => góc EFB = góc ECB 

Từ 2 điều trên => góc ENM = góc ECB 

=> MN // BC => đpcm

1 tháng 4 2020

Gọi số thí sinh là x ( \(\inℕ^∗\) ; học sinh ) và số phòng thi là y ( \(\inℕ^∗\); phòng )

+) Nếu mỗi phòng chỉ có 25 học sinh thì có 14 học sinh chưa có phòng thi: 

=> x = 25.y + 14  (1) 

+) Nếu mỗi phòng có 26 học sinh thì phòng cuối cùng chỉ có 5 bạn: 

=> x = 26 ( y - 1) + 5  (2 )

Từ (1) ; (2) ta có hệ: \(\hept{\begin{cases}x-25y=14\\x-26y=-21\end{cases}}\Leftrightarrow\hept{\begin{cases}x=889\\y=35\end{cases}}\)( thỏa mãn)

Vậy có 889 thí sinh và 35 phòng thi

31 tháng 3 2020

xét BĐT \(2ab\le a^2+b^2=>\frac{a.b}{1}=a.b\le\frac{a^2+b^2}{2}\left(a,b>0\right)\)

Áp dụng , ta có

\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{4}{x^2+x^2}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\)

áp dụng BĐT bunhia có 

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\left(\forall a,b,x,y>0\right)\)

Zậy 

\(\left(x+y\right)^2=1\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)

hay \(\frac{1}{2}\le x^2+y^2\)

zậy 

\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\ge\frac{7}{\frac{1}{2}}=14\left(dpcm\right)\)

dấu "=" xảy ra khi zà chỉ khi x=y=1/2