\(\frac{4^5\times9^4-2\times6^9}{2^{10}\times3^8+6^8\times20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(14\left(x-y\right)^2+21\left(y-x\right)\)
\(=14\left(x-y\right)^2-21\left(x-y\right)\)
\(=7\left(x-y\right)\left[2\left(x-y\right)-3\right]\)
\(=7\left(x-y\right)\left(2x-2y-3\right)\)
b) \(7x^5\left(y-3\right)-49x^4\left(3-y\right)^3\)
\(=7x^4\left(y-3\right)\left[x+7\left(y-3\right)^2\right]\)
\(=7x^4\left(y-3\right)\left(x+7y^2-42y+63\right)\)
c) \(\left(x^2-9\right)^2-x^2\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left(x+3\right)^2-x^2\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left[\left(x+3\right)^2-x^2\right]\)
\(=\left(x-3\right)^2\left(x^2+6x+9-x^2\right)\)
\(=3\left(x-3\right)^2\left(x+3\right)\)
d) \(\left(4x^2-1\right)^2-9\left(2x-1\right)^2\)
\(=\left(2x-1\right)^2\left(2x+1\right)^2-9\left(2x-1\right)^2\)
\(=\left(2x-1\right)^2\left[\left(2x+1\right)^2-9\right]\)
\(=\left(2x-1\right)^2\left(4x^2+4x+1-9\right)\)
\(=4\left(2x-1\right)^2\left(x^2+x-2\right)\)
\(=4\left(2x-1\right)^2\left(x-1\right)\left(x+2\right)\)
Ta có: \(\left(x+3\right)^3-\left(x+1\right)^3=56\)
\(\Leftrightarrow x^3+9x^2+27x+27-x^3-3x^2-3x-1-56=0\)
\(\Leftrightarrow6x^2+24x-30=0\)
\(\Leftrightarrow x^2+4x-5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
\(\left(3x-2\right)^3=0\)
\(\left(3x-2\right)^3=0^3\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow3x=2\)
\(\Rightarrow x=\frac{2}{3}\)
\(\left(\frac{1}{3}-2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(\frac{1}{27}-8x^3\right)\)
\(=\frac{1}{3}\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-2x\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\frac{1}{27}+8x^3\)
\(=\frac{4}{3}x^2+\frac{2}{9}x+\frac{1}{27}-8x^3-\frac{4}{3}x^2-\frac{2}{9}x-\frac{1}{27}+8x^3\)
\(=\left(\frac{4}{3}x^2-\frac{4}{3}x^2\right)+\left(\frac{2}{9}x-\frac{2}{9}x\right)+\left(\frac{1}{27}-\frac{1}{27}\right)+\left(-8x^3+8x^3\right)\)
= 0 =>không phụ thuộc vào biến x
Ta có: \(\left(\frac{1}{3}-2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(\frac{1}{27}-8x^3\right)\)
\(=\left(\frac{1}{3}-2x\right)\left[\left(\frac{1}{3}\right)^2+\frac{1}{3}\cdot2x+\left(2x\right)^2\right]-\left(\frac{1}{27}-8x^3\right)\)
\(=\left(\frac{1}{27}-8x^3\right)-\left(\frac{1}{27}-8x^3\right)\)
\(=0\)
=> đpcm
Ta có (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)
= x3 - 3x2 + 3x - 1 - (x3 + 3x2 + 3x + 1) + 6(x2 - 1)
= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6
= -6x2 - 2 + 6x2 - 6
= -8
=> Biểu thức trên không phụ thuộc vào biến (đpcm)
( x + 2 )3 + ( x - 2 )3 - 2x( x2 + 12 )
= x3 + 6x2 + 12x + 8 + x3 - 6x2 + 12x - 8 - 2x3 - 24x
= 0 ( đpcm )
\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)
\(=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}\)
\(=\frac{-1}{3}\)
Ta có:
\(\frac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\frac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\frac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)
\(=-\frac{2}{6}=-\frac{1}{3}\)