Tìm x ∈ Q biết :
2 . | x - 5 | + 3 . | 5 - x | = 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\frac{4^2.4^3}{2^{10}}=4^5:2^{10}=\left(2^2\right)^5.:2^{10}=2^{10}:2^{20}=1\)
\(b,=\left(3^3\right)^5:3^8=3^{15}:3^8=3^7\)
\(c,=\left(3^3\right)^2.\left(5^2\right)^3=3^6.5^6=\left(3.6\right)^6=18^6\)
\(d,=\left(15^2\right)^4.9^4=225^4.9^4=\left(225.9\right)^4=2025^4\)
54 . 204/255 . 45
TL:
\(\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.5^4.4^4}{(5^2)^5.4^5}=\frac{5^85^4}{5^{10}.4^5}=\frac{1}{25.4}=\frac{1}{100}\)
Sửa đề:
\(\frac{5^4.20^4}{25^5.4^5}\)
\(=\)\(\frac{5^4.5^4.4^4}{\left(5^2\right)^5.4^5}\)
\(=\)\(\frac{5^8.4^4}{5^{10}.4^5}\)
\(=\)\(\frac{1}{25.4}\)
\(=\)\(\frac{1}{100}\)
Vì | 2x - 0,5 | ≥ 0 ∀ x ∈ Z
\(\Rightarrow\left|2x-0,5\right|+\frac{1}{3}\ge\frac{1}{3}\)
Để \(\left|2x-0,5\right|+\frac{1}{3}\)nhận giá trị nhỏ nhất khi \(\left|2x-0,5\right|+\frac{1}{3}=\frac{1}{3}\)
<=> | 2x - 0,5 | = 0
<=> 2x - 0,5 = 0
<=> 2x = 0,5
<=> x = 0,25
`|2x-0,5| + 1/3`
Vì `|2x-0,5| >= 0`
`-> |2x-0,5| +1/3 >= 1/3`
Dấu "=" xảy ra khi : `<=> |2x-0,5|=0 <=> x=1/4`
Vậy GTNN của BT là `1/3 <=> x=1/4`
\(c,TH1:\frac{2}{3}x-\frac{4}{9}=0=>x=\frac{2}{3}\)
\(TH2:\frac{1}{2}+-\frac{3}{7}:x=0=>x=\frac{6}{7}\)
Vậy \(x\in\left\{\frac{2}{3};\frac{6}{7}\right\}\)
c) \(\left(\frac{2}{3}.x-\frac{4}{9}\right)\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}.x-\frac{4}{9}=0\\\frac{1}{2}+\frac{-3}{7}:x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}.x=\frac{4}{9}\\\frac{-3}{7}:x=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{6}{7}\end{cases}}\)
Xét ∆ABC và ∆ADE :
AB = AD(gt)
Góc BAC = góc EAD (cùng phụ với gócCAD )
AC = AE (gt)
=>∆ABC = ∆ADE (c - g - c)
=> BC = DE
=> AM = BC/2 = DE/2
k cho mk nha
chúc bn trung thu vui vẻ
HT
\(\frac{\frac{4}{115}-\frac{4}{5}-\frac{4}{6115}}{\frac{7}{115}-\frac{7}{5}-\frac{7}{6115}}+\frac{3}{7}\)
\(=\frac{4.\left(\frac{1}{115}-\frac{1}{5}-\frac{1}{6115}\right)}{7.\left(\frac{1}{115}-\frac{1}{5}-\frac{1}{6115}\right)}+\frac{3}{7}\)
\(=\frac{4}{7}+\frac{3}{7}=1\)
\(a)\)\(\frac{\frac{4}{115}-\frac{4}{5}-\frac{4}{6115}}{\frac{7}{115}-\frac{7}{5}-\frac{7}{6115}}+\frac{3}{7}\)
\(=\)\(\frac{4.\left(\frac{1}{115}-\frac{1}{5}-\frac{1}{6115}\right)}{7.\left(\frac{1}{115}-\frac{1}{5}-\frac{1}{6115}\right)}+\frac{3}{7}\)
\(=\)\(\frac{4}{7}+\frac{3}{7}\)
\(=\)\(1\)
a) \(-\left(\frac{13}{25}-\frac{4}{191}+\frac{2}{51}\right)+\left(-\frac{4}{191}+\frac{2}{51}+\frac{3}{5}\right)\)
\(=-\frac{13}{25}+\frac{4}{191}-\frac{2}{51}-\frac{4}{191}+\frac{2}{51}+\frac{3}{5}\)
\(=\left(-\frac{13}{25}+\frac{3}{5}\right)+\left(\frac{4}{191}-\frac{4}{191}\right)-\left(\frac{2}{51}+\frac{2}{51}\right)\)
\(=\frac{2}{25}+0-0=\frac{2}{25}\)
b) \(12\frac{3}{5}:\left(-\frac{5}{7}\right)+2\frac{2}{5}:\left(-\frac{5}{7}\right)\)
\(=\frac{63}{5}.\frac{-7}{5}+\frac{12}{5}.\frac{-7}{5}\)
\(=\left(\frac{63}{5}+\frac{12}{5}\right).\frac{-7}{5}\)
\(=15.\frac{-7}{5}=-21\)
\(2\left|x-5\right|+3\left|5-x\right|=10\)
\(\Rightarrow2\left|x-5\right|+3\left|x-5\right|=10\)
\(\Rightarrow\left|x-5\right|.\left(2+3\right)=10\)
\(\Rightarrow\left|x-5\right|.5=10\)
\(\Rightarrow\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=\left(-2\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)