PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
a) x^3 + 4x^2 - 29x + 40
b)2x^3 - 3x^2 - 4
c) x^3 + 3x +36
GIÚP MÌNH VỚI AH!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
à nêu cảm nhận thì mình nêu đc nhưng dùng biện pháp nói quá thì mình ko quen
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
=> \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{\left(a+b+c\right)c}\)
Nếu a + b = 0
=> a = -b
Khi đó \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{c^{2017}}\)(1)
\(\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{-b^{2017}+b^{2017}+c^{2017}}=\frac{1}{c^{2017}}\)(2)
Từ (1)(2) => \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)(3)
Nếu a + b \(\ne\)0
=> ab = -(a + b + c).c
=> ab = -ac - bc - c2
=> ab + ac + bc+ c2 = 0
=> a(b + c) + c(b + c) = 0
=> (a + c)(b + c) = 0
=> \(\orbr{\begin{cases}a+c=0\\b+c=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=-c\\b=-c\end{cases}}\)
Tương tự (1);(2) thay a = -c vào đẳng thức ta được
\(\hept{\begin{cases}\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{b^{2017}}\\\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{b^{2017}}\end{cases}\Rightarrowđpcm}\)(4)
Với b = -c ta được
\(\hept{\begin{cases}\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}}\\\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{a^{2017}}\end{cases}}\Rightarrow\text{đpcm}\)(5)
Từ (3)(4)(5)
Vậy \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)