Cho tam giác ABC có BC=a, M là trung điểm cạnh BC. Gọi r;r1;r2 lần lượt là bán kính các đường tròn nội tiếp tam giác ABC, MAB, MAC
Chứng minh: \(\frac{1}{r_1}+\frac{1}{r_2}\ge2\left(\frac{1}{r}+\frac{2}{a}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a) (O′) có OA là đường kính và E(O′) nên OE⊥AC
Tương tự với (O) ta có BC⊥AC nên OE//BC mà OO là trung điểm của AB
⇒E là trung điểm của AC⇒ OE=12BC.
Tương tự OF=12DB mà cung BC bằng cung BD nên BC=BD⇒OE=OF hay cung OE= cung OF.
~Học tốt!~
a) CA=CM ( t/c 2 tiếp tuyến cắt nhau )
DB=DM(t/c 2 tiếp tuyến cắt nhau)
=>CD=CM+MD=CA+DB
hay CD=AC+BD
OC là tia phân giác của góc AOM
OD là tia phân giác của góc BOM
mà góc AOM kề bù zới góc BOM
=> góc COD =90 độ
Zậy tam giác COD zuông tại O
b)tam giác COD zuông tại O có OM zuông góc zới CD
=>\(OM^2=CM.MD\left(2\right)=>AC.BD=R^2\)
c) tam giác BMD đều
\(S_{BMD}=\frac{3R^2\sqrt{3}}{4}đzịdt\)
d) Chưng minh MN song song zới AC bằng định lý TA-lét đảo nhá
Bạn có thể viết rõ ra đc ko ,mk ko hiểu bn viết gì hết
Vẽ đường cao AH của \(\Delta\)ABC
Ta có: \(S_{MAB}=S_{MAC}=\frac{1}{2}S_{ABC}\)mà AM > AH (AH _|_ HM)
Do đó: \(\frac{4}{a}=\frac{2\cdot AH}{S_{ABC}}\le\frac{2AM}{S_{ABC}}=\frac{AM}{S_{MAB}}\left(1\right)\)
Gọi I là tâm đường tròn nội tiếp \(\Delta\)ABC
Ta có \(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}\)
\(\Rightarrow S_{ABC}=\frac{r\cdot BC}{2}+\frac{r\cdot AC}{2}+\frac{r\cdot AB}{2}\)
\(\Rightarrow\frac{2}{r}=\frac{AB+BC+AC}{2S_{MAB}}\)
Tương tự xét \(\Delta\)MAB và \(\Delta\)MAC ta cũng có:
\(\hept{\begin{cases}\frac{2}{r_1}=\frac{AM+AB+\frac{BC}{2}}{S_{MAB}}\\\frac{2}{r_2}=\frac{AM+AC+\frac{BC}{2}}{A_{MAC}}\end{cases}\left(2\right)}\)
Do đó:
\(\frac{4}{a}+\frac{2}{r}\le\frac{MA}{S_{MAB}}+\frac{AB+BC+AC}{2S_{MAB}}=\frac{1}{2}\left(\frac{AM}{S_{MAB}}+\frac{AB+\frac{AC}{2}}{S_{MAB}}\right)+\frac{1}{2}\left(\frac{AM}{S_{MAC}}+\frac{AC+\frac{BC}{2}}{S_{MAC}}\right)=\frac{1}{r_1}+\frac{1}{r_2}\)
Vậy \(\frac{1}{r_1}+\frac{1}{r_2}\ge2\left(\frac{1}{r}+\frac{1}{a}\right)\)