K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2023

Mn giúp mik vs ạ

 

 

7 tháng 10 2023

loading...loading...

8 tháng 10 2023

a) Ta có: ��⊥��AxAC và ��By // ��AC

=>  ��⊥��AxBy ⇒���^=90∘
⇒Góc AMB = 90 độ

Xét Δ���ΔMAQ và Δ���ΔQBM có

���^=���^Góc MQA = góc BQM (so le trong);

��MQ là cạnh chung;

���^=���^Góc AMQ = góc BQM(Ax//QB)

Suy ra Δ���= Δ���ΔMAQ= ΔQBM (g-c-g)

Suy ra góc MBQ = góc MAQ= 90 độ (2 góc tương ứng)

Xét tứ giác AMBQ có

Góc QAM = góc AMB = góc MBQ = 90 độ

=> tứ giác ����AMBQ là hình chữ nhật.

b) Do tứ giác ����AMBQ là hình chữ nhật

Mà P là trung điểm AB

=>P là trung điểm của MQ; AB = MQ

=> PQ = 1/2 AB (1) 

Xét  tam giác AIB vuông tại I và có IP là đường trung tuyến

=> IP = 1/2 AB(2)

Từ (1) và (2)

=> QP =IP 

=> Tam giác PQI cân tại P

 

25 tháng 9 2023

Diện tích xung quanh của kho chứa:

\(S_{xq}=p\cdot d=\dfrac{12+12+12}{2}\cdot8=144\left(m^2\right)\)

Diện tích cần sơn thực tế:

\(S_s=S_{xq}-S_c=144-5=139\left(m^2\right)\)

Số tiền cần dùng để hoàn thành việc sơn là:

\(T=S_s\cdot30000=4170000\left(đ\right)\)

25 tháng 9 2023

Áp dụng BĐT Cô-si cho 3 số dương \(x^2,y^2,z^2\) , ta có:\(x^2+y^2+z^2\ge3\sqrt[3]{\left(xyz\right)^2}\)

\(\Leftrightarrow\left(xyz\right)^2\le\dfrac{\left(x^2+y^2+z^2\right)^3}{27}\) \(=\dfrac{1}{27}\)

\(\Leftrightarrow-\dfrac{1}{3\sqrt{3}}\le xyz\le\dfrac{1}{3\sqrt{3}}\)

 Vậy \(max_{xyz}=\dfrac{1}{3\sqrt{3}}\). Dấu "=" xảy ra khi \(x^2=y^2=z^2\) 

\(\Rightarrow\left(x,y,z\right)=\left(\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}}\right)\) hoặc \(\left(\dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{3}}\right)\) và các hoán vị.

 

24 tháng 9 2023

\(a)\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

Để đơn giản hơn cũng như là dễ nhìn hơn thì ta :

Đặt : \(x^2+2x=a\)

Do đó ta có đa thức :

\(a.\left(a+4\right)+3=a^2+4a+3\)

\(=a^2+a+3a+3\)

\(=a\left(a+1\right)+3\left(a+1\right)\)

\(=\left(a+1\right)\left(a+3\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)

 

24 tháng 9 2023

Hoặc bạn có thể đặt \(x^2+2x+2=t\)

Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

\(P=\left(t-2\right)\left(t+2\right)+3\)

\(P=t^2-4+3\)

\(P=t^2-1\)

\(P=\left(t-1\right)\left(t+1\right)\)

\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)