x/2 + x/3 -1 = 1/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-> Công thức tính số số hạng của dãy số cách đều tăng dần:
(Số cuối - Số đầu) : Khoảng cách + 1
-> Công thức tính tổng dãy số cách đều với số hạng tăng dần:
(Số cuối + Số đầu) . Số số hạng : 2
a: 210:x-10=20
=>210:x=20+10=30
=>\(x=\dfrac{210}{30}=7\)(nhận)
b: \(770:\left[\left(20x+10\right):5\right]=35\)
=>\(\left(20x+10\right):5=\dfrac{770}{35}=22\)
=>20x+10=110
=>20x=100
=>x=5(nhận)
c: \(30-\left[4\left(x-2\right)+15\right]=3\)
=>4(x-2)+15=30-3=27
=>4(x-2)=27-15=12
=>x-2=3
=>x=3+2=5(nhận)
d: \(1+2+3+...+x=820\)
=>\(\dfrac{x\left(x+1\right)}{2}=820\)
=>x(x+1)=1640
=>\(x^2+x-1640=0\)
=>(x+41)(x-40)=0
=>\(\left[{}\begin{matrix}x=-41\left(loại\right)\\x=40\left(nhận\right)\end{matrix}\right.\)
e: (x-1)(x-3)=63
=>\(x^2-4x+3-63=0\)
=>\(x^2-4x-60=0\)
=>(x-10)(x+6)=0
=>\(\left[{}\begin{matrix}x=10\left(nhận\right)\\x=-6\left(loại\right)\end{matrix}\right.\)
f: \(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
=>100x+(1+2+...+100)=5750
=>\(100x+100\cdot\dfrac{101}{2}=5750\)
=>100x+5050=5750
=>100x=700
=>x=7
`#3107.101107`
`a,`
\(12\cdot53+53\cdot172+184\cdot47\)
\(=53\cdot\left(12+172\right)+184\cdot47\\ =53\cdot184+184\cdot47\\ =184\cdot\left(53+47\right)\\ =184\cdot100\\ =18400\)
`b,`
\(43\cdot29+57\cdot29-73\cdot26-27\cdot26\\ =29\cdot\left(43+57\right)-26\cdot\left(73+27\right)\\ =29\cdot100-26\cdot100\\ =100\cdot\left(29-26\right)\\ =100\cdot3\\ =300\)
`c,`
\(4\cdot22\cdot87+11\cdot8\cdot36-2\cdot44\cdot23\\ =11\cdot4\cdot2\cdot87+11\cdot8\cdot36-11\cdot4\cdot2\cdot23\\ =11\cdot8\cdot87+11\cdot8\cdot36-11\cdot8\cdot23\\ =11\cdot8\cdot\left(87+36-23\right)\\ =88\cdot100\\ =8800\)
`d,`
\(100-96+92-88+84-80+...+12-8+4\)
Gọi tổng sau là A
`A = (100 - 96) + (92 - 88) + (84 - 80) + ... + (12 - 8) + 4`
Số số hạng có trong tổng A:
`(100 - 4) \div 4 + 1 = 25` (số hạng)
Ghép mỗi cặp 2 số lại với nhau, các cặp có trong tổng:
`25 \div 2 = 12` (dư 1 số)
Ta có:
`A = 4 + 4 + 4 + .... + 4 + 4`
Trong đó, có `12` cặp ghép với nhau (dư 1)
`A = 4 \times 12 + 4`
`= 48 + 4`
`= 52`
Vậy, tổng A có giá trị là `52.`
\(N=-1-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)
Xét \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)
\(\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{11}}\Rightarrow\dfrac{1}{2}A-A=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{11}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow-\dfrac{1}{2}A=-\dfrac{1}{2}+\dfrac{1}{2^{11}}\Rightarrow A=-\dfrac{1}{2^{10}}\)
\(\Rightarrow N=-1-\left(-\dfrac{1}{2^{10}}\right)=-1+\dfrac{1}{2^{10}}\)
=> Vậy ko tm đpcm
Chu vi hình chữ nhật là:
`40` x `4 = 160 (cm)`
Tổng chiều dài và rộng của hình chữ nhật là:
`160 : 2 = 80 (cm)`
Chiều dài hình chữ nhật là:
`(80 + 8) : 2 = 44 (cm)`
Chiều rộng hình chữ nhật là:
`44 - 8 = 36 (cm)`
Diện tích hình chữ nhật là:
`44` x `36 = 1584 (cm^2)`
Đáp số: `1584 cm^2`
`102024 - 4 = 102020 `
Tổng các chữ số của `102020` là:
`1+0+2+0+2+0 = 5 `
Ta có:
`5 : 3 = 1` dư `2 `
`5 : 9 = 0` dư `5`
Nên:
`102020 : `3 dư `2`
`102020 : 9` dư `5`
Hay
`(102024 - 4) : 3` dư `2`
`(102024 - 4) : 9` dư `5`
Cửa hàng có số viên bi là:
`2416` x `5 = 12080` (viên bi)
Mỗi túi có số viên bi là:
`12080 : 4 = 3020` (viên bi)
Đáp số: `3020` viên bi
a: Xét (O) có
ΔCMD nội tiếp
CD là đường kính
Do đó:ΔCMD vuông tại M
=>DM\(\perp\)CF tại M
b: Xét (O) có AB,CD là các đường kính và AB\(\perp\)CD tại O
nên \(sđ\stackrel\frown{CA}=sđ\stackrel\frown{CB}=sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD}\)
Xét (O) có \(\widehat{MNB}\) là góc có đỉnh ở bên trong đường tròn chắn hai cung MB,AD
=>\(\widehat{MNB}=\dfrac{1}{2}\left(sđ\stackrel\frown{MB}+sđ\stackrel\frown{AD}\right)=\dfrac{1}{2}\left(sđ\stackrel\frown{MB}+sđ\stackrel\frown{BD}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{MD}\)
Xét (O) có
\(\widehat{DME}\) là góc tạo bởi tiếp tuyến ME và dây cung MD
=>\(\widehat{DME}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MD}\)
=>\(\widehat{DME}=\widehat{MNB}\)
=>ΔENM cân tại E
Ta có: \(\widehat{EMN}+\widehat{EMF}=\widehat{FMN}=90^0\)
\(\widehat{ENM}+\widehat{EFM}=90^0\)(ΔNMF vuông tại M)
mà \(\widehat{ENM}=\widehat{EMN}\)
nên \(\widehat{EMF}=\widehat{EFM}\)
=>ΔEFM cân tại E
Các số là bình phương của 1 số tự nhiên là:
`1 = 1^2`
`36 = 6^2`
`49 = 7^2`
`900 = 30^2`
\(\dfrac{x}{2}+\dfrac{x}{3}-1=\dfrac{1}{6}\Rightarrow3x+2x-6=1\Leftrightarrow5x=7\Leftrightarrow x=\dfrac{7}{5}\)