giải pt sau với a là tham số :
\(\dfrac{x-a}{3}\text{=}\dfrac{x+3}{a}+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)
(*) \(m\ne0\) Phương trình có nghiệm
\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)
Hệ thức Viet kết hợp 4x1 + 3x2 = 1
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)
\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)
\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)
\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1
Lời giải:
a. Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
$x_1+x_2=m+2$
$x_1x_2=m-1$
$\Rightarrow x_1+x_2-x_1x_2=(m+2)-(m-1)=3$
$\Leftrightarrow x_1+x_2-x_1x_2-3=0$ (đây chính là biểu thức liên hệ giữa $x_1,x_2$ mà không phụ thuộc vào $m$)
b.
$x_1+x_2=-(4m+1)$
$x_1x_2=2(m-4)$
$\Rightarrow x_1+x_2+2x_1x_2=-(4m+1)+4(m-4)=-17$
$\Rightarrow x_1+x_2+2x_1x_2+17=0$
a)
\(m=6\)
\(\Rightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
b)
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow x_1^2=2x_1x_2+x^2_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
Mà \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1-x_2=m\end{matrix}\right.\)
\(\Rightarrow25-4m=9\)
\(\Leftrightarrow4m=16\)
\(\Leftrightarrow m=4\)
\(DKXD:a\ne0\)
\(\dfrac{x-a}{3}\text{=}\dfrac{x+3}{a}+2\)
\(\Leftrightarrow\dfrac{a\left(x-a\right)}{3a}\text{=}\dfrac{3\left(x+3\right)}{3a}-\dfrac{6a}{3a}\)
\(\Rightarrow a\left(x-a\right)\text{=}3\left(x+3\right)-6a\)
\(\Leftrightarrow ax-a^2\text{=}3x+9-6a\)
\(\Leftrightarrow ax-3x\text{=}a^2-6a+9\)
\(\Leftrightarrow x\left(a-3\right)\text{=}\left(a-3\right)^2\)
Nếu \(a\ne3\) , phương trình có nghiệm \(x\text{=}a-3\)
Nếu \(a\text{=}3\) thì pt có dạng : \(0x\text{=}0\)
\(Vay...\)
cái chỗ : \(0x\text{=}0\left(ptvonghiem\right)\) rồi kết luận nha