Giuap em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + ... + \(\dfrac{1}{120}\)
A = \(\dfrac{2}{2}\).(\(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + ... + \(\dfrac{1}{120}\))
A = \(2\).(\(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\)... + \(\dfrac{1}{240}\))
A = 2.(\(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + ... + \(\dfrac{1}{15.16}\))
A = 2.(\(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{15}\) - \(\dfrac{1}{16}\))
A = 2.(\(\dfrac{1}{4}\) - \(\dfrac{1}{16}\))
A = 2.\(\dfrac{3}{16}\)
A = \(\dfrac{3}{8}\)
Bài 1:
Theo pytago ta có: HB2 + AH2 = AB2
⇒ HB2 = AB2 - AH2
HB2 = 102 - 82 = 36
HB = \(\sqrt{36}\) = 6 (cm)
Xét tam giác ABC và tam giác HBA có:
\(\widehat{BAC}\) = \(\widehat{BHA}\) = 900
\(\widehat{ABC}\) = \(\widehat{HBA}\)
⇒ \(\Delta\) ABC \(\sim\) \(\Delta\) HBA (g - g)
⇒ \(\dfrac{AB}{HB}\) = \(\dfrac{BC}{BA}\)
BC = \(\dfrac{AB}{HB}\) \(\times\) AB
BC = \(\dfrac{10.10}{6}\) = \(\dfrac{50}{3}\) (cm)
SABC = \(\dfrac{1}{2}\)BC \(\times\) AH = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{50}{3}\) \(\times\) 8 = \(\dfrac{200}{3}\) (cm2)
Vì M là trung điểm của tam giác ABC nên
SABM = \(\dfrac{1}{2}\) SABC (hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và BM = \(\dfrac{1}{2}\) BC)
SABM = \(\dfrac{200}{3}\).\(\dfrac{1}{2}\) = \(\dfrac{100}{3}\) (cm2)
SAHB = \(\dfrac{1}{2}\)AH.HB = \(\dfrac{8.6}{2}\) = 24 (cm2)
SAHB + SAHM = SABM
⇒ SAHM = SABM - SAHB
SAHM = \(\dfrac{100}{3}\) - 24 = \(\dfrac{28}{3}\) (cm2)
Kết luận: BC dài \(\dfrac{50}{3}\) cm; Diện tích tam giác AHM là \(\dfrac{28}{3}\) cm2
P = (1 - 1/2024) × (1 - 1/2023) × (1 - 1/2022) × (1 - 1/2021)
= 2023/2024 × 2022/2023 × 2021/2022 × 2020/2021
= 2020/2024
= 505/506
Bài 1:
Theo pytago ta có: HB2 + AH2 = AB2
⇒ HB2 = AB2 - AH2
HB2 = 102 - 82 = 36
HB = \(\sqrt{36}\) = 6 (cm)
Xét tam giác ABC và tam giác HBA có:
\(\widehat{BAC}\) = \(\widehat{BHA}\) = 900
\(\widehat{ABC}\) = \(\widehat{HBA}\)
⇒ \(\Delta\) ABC \(\sim\) \(\Delta\) HBA (g - g)
⇒ \(\dfrac{AB}{HB}\) = \(\dfrac{BC}{BA}\)
BC = \(\dfrac{AB}{HB}\) \(\times\) AB
BC = \(\dfrac{10.10}{6}\) = \(\dfrac{50}{3}\) (cm)
SABC = \(\dfrac{1}{2}\)BC \(\times\) AH = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{50}{3}\) \(\times\) 8 = \(\dfrac{200}{3}\) (cm2)
Vì M là trung điểm của tam giác ABC nên
SABM = \(\dfrac{1}{2}\) SABC (hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và BM = \(\dfrac{1}{2}\) BC)
SABM = \(\dfrac{200}{3}\).\(\dfrac{1}{2}\) = \(\dfrac{100}{3}\) (cm2)
SAHB = \(\dfrac{1}{2}\)AH.HB = \(\dfrac{8.6}{2}\) = 24 (cm2)
SAHB + SAHM = SABM
⇒ SAHM = SABM - SAHB
SAHM = \(\dfrac{100}{3}\) - 24 = \(\dfrac{28}{3}\) (cm2)
Kết luận: BC dài \(\dfrac{50}{3}\) cm; Diện tích tam giác AHM là \(\dfrac{28}{3}\) cm2
\(\dfrac{-3}{8}\cdot16\cdot\dfrac{8}{17}-0,375\cdot7\cdot\dfrac{9}{17}\)
\(=-\dfrac{3}{8}\cdot\dfrac{128}{17}-\dfrac{3}{8}\cdot\dfrac{63}{17}\)
\(=-\dfrac{3}{8}\left(\dfrac{128}{17}+\dfrac{63}{17}\right)=-\dfrac{3}{8}\cdot\dfrac{191}{17}=\dfrac{-573}{136}\)
- \(\dfrac{3}{8}\).16.\(\dfrac{8}{17}\) - 0,375.7\(\dfrac{9}{17}\)
Đề như này phải không em?
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)
Do đó: ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>\(\widehat{ECB}=\widehat{DBC}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
=>ΔHBC cân tại H
ta có: HB=HC
=>H nằm trên đường trung trực của BC(1)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AH là đường trung trực của BC