K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

4a^2 : (a+3)=1

=>a+3=4a2 : 1

a+3=4a.a

<=> 4a.a - a-3=0

a.(4a-1)-3=0

=>a.(4a-1)=3

=>a và 4a-1 thuộc Ư(3)={1;-1;3;-3}

với a =1=>4a-1=3<=>a=1(tm)

với a=-1=>4a-1=-3<=>a=-1/2(ktm)

với a=3=>4a-1=1<=>a=1/2(ktm)

với a= -3=>4a-1=-1<=>a=0(ktm)

vậy ....

21 tháng 3 2020

đáp án: -(x-1)

bạn đổi dấu vế phải, và phân tích hằng đẳng thức vế trái

21 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}a\ne-3\\a\ne\pm2\end{cases}}\)

    \(M=\frac{2a-a^2}{a+3}\left(\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right)\)

\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{\left(a-2\right)^2-\left(a+2\right)^2-4a^2}{\left(a-2\right)\left(a+2\right)}\)

\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{a^2-4a+4-a^2-4a-4-4a^2}{\left(a-2\right)\left(a+2\right)}\)

\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a^2-8a}{\left(a-2\right)\left(a+2\right)}\)

\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}\)

\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a}{a-2}\)

\(\Leftrightarrow M=\frac{4a^2\left(a-2\right)}{\left(a+3\right)\left(a-2\right)}\)

\(\Leftrightarrow M=\frac{4a^2}{a+3}\)

b) Để M = 1

\(\Leftrightarrow\frac{4a^2}{a+3}=1\)

\(\Leftrightarrow4a^2=a+3\)

\(\Leftrightarrow4a^2-a-3=0\)

\(\Leftrightarrow\left(4a+3\right)\left(a-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4a+3=0\\a-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\left(tm\right)\\a=1\left(tm\right)\end{cases}}\)

Vậy để \(M=1\Leftrightarrow a\in\left\{-\frac{3}{4};1\right\}\)

c) Để M > 0

\(\Leftrightarrow\frac{4a^2}{a+3}>0\)

\(\Leftrightarrow a+3>0\)(Vì 4a2 > 0, loại trường hợp = 0)

\(\Leftrightarrow a>-3\)

Vậy để \(M>0\Leftrightarrow a>-3\)

Để M < 0

\(\Leftrightarrow\frac{4a^2}{a+3}< 0\)

\(\Leftrightarrow a+3< 0\)(Vì 4a2 > 0, loại trường hợp = 0)

\(\Leftrightarrow a< -3\)

Vậy để \(M< 0\Leftrightarrow a< -3\)

21 tháng 3 2020

Ta có: \(\overline{abc}⋮37\Leftrightarrow100a+10b+c⋮37\)(1)

+) (1) => \(10\left(100a+10b+c\right)⋮37\)

<=> \(100b+10c+a+999a⋮37\) mà \(999a=37.27a⋮37\)

=> \(100b+10c+a⋮37\Leftrightarrow\overline{bca}⋮37\)

+) (1) => \(100\left(100a+10b+c\right)⋮37\)

<=> \(\left(100c+10a+b\right)+999\left(10a+b\right)⋮37\)mà \(999\left(10a+b\right)=37.27\left(10a+b\right)⋮37\)

=> \(\overline{cab}=100c+10a+b⋮37\)

21 tháng 3 2020

A B C D M K

a) Xét \(\Delta\)ABM và \(\Delta\)KCM có: MK = MA ; MB = MC ; ^AMB = ^KMC ( đối đỉnh )

=> \(\Delta\)ABM = \(\Delta\)KCM => AB = KC (1)

Vì \(\Delta\)ABC cân có AM là đường trung tuyến => AM là đường trung trực  hay KM là đường trung trực => KB = KC(2)

\(\Delta\)ABC cân => AB = AC (3)

Từ (1) ; (2) (3) => AB = AC = KB = KC => ABKC là hình thoi

b) ABKC là hình thoi => KC //AB => CD //AB mà theo đề AD //BC 

=> ABCD là hình bình hành 

c) \(\Delta\)ABC cân có AN kaf đường trung tuyến => AM vuông góc BC mà AD // BC => AD vuông AM  => ^DAK = ^DAM = 90 độ 

Ta có: BM = 1/2 . BC = 6 : 2 = 3 cm AB = 5 cm 

\(\Delta\)ABM vuông tại M . Theo định lí Pitago => AM = 4 cm 

=> AK = 2AM = 2.4 = 8cm

AD = BC = 6cm ( ABCD là hình bình hành )

=> S ( DAK ) = AD.AK : 2 = 6.8 : 2 = 24 ( cm^2) 

d) Để ABKC kaf hình vuông; mà ABKC là hình thoi  nên ^BAC = 90 độ 

=> tam giác ABC Có thêm điều kiện vuông tại A thì ABKC là hình vuông.