4a2:(a+3) =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đáp án: -(x-1)
bạn đổi dấu vế phải, và phân tích hằng đẳng thức vế trái
a) \(ĐKXĐ:\hept{\begin{cases}a\ne-3\\a\ne\pm2\end{cases}}\)
\(M=\frac{2a-a^2}{a+3}\left(\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right)\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{\left(a-2\right)^2-\left(a+2\right)^2-4a^2}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{a^2-4a+4-a^2-4a-4-4a^2}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a^2-8a}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a}{a-2}\)
\(\Leftrightarrow M=\frac{4a^2\left(a-2\right)}{\left(a+3\right)\left(a-2\right)}\)
\(\Leftrightarrow M=\frac{4a^2}{a+3}\)
b) Để M = 1
\(\Leftrightarrow\frac{4a^2}{a+3}=1\)
\(\Leftrightarrow4a^2=a+3\)
\(\Leftrightarrow4a^2-a-3=0\)
\(\Leftrightarrow\left(4a+3\right)\left(a-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4a+3=0\\a-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\left(tm\right)\\a=1\left(tm\right)\end{cases}}\)
Vậy để \(M=1\Leftrightarrow a\in\left\{-\frac{3}{4};1\right\}\)
c) Để M > 0
\(\Leftrightarrow\frac{4a^2}{a+3}>0\)
\(\Leftrightarrow a+3>0\)(Vì 4a2 > 0, loại trường hợp = 0)
\(\Leftrightarrow a>-3\)
Vậy để \(M>0\Leftrightarrow a>-3\)
Để M < 0
\(\Leftrightarrow\frac{4a^2}{a+3}< 0\)
\(\Leftrightarrow a+3< 0\)(Vì 4a2 > 0, loại trường hợp = 0)
\(\Leftrightarrow a< -3\)
Vậy để \(M< 0\Leftrightarrow a< -3\)
Ta có: \(\overline{abc}⋮37\Leftrightarrow100a+10b+c⋮37\)(1)
+) (1) => \(10\left(100a+10b+c\right)⋮37\)
<=> \(100b+10c+a+999a⋮37\) mà \(999a=37.27a⋮37\)
=> \(100b+10c+a⋮37\Leftrightarrow\overline{bca}⋮37\)
+) (1) => \(100\left(100a+10b+c\right)⋮37\)
<=> \(\left(100c+10a+b\right)+999\left(10a+b\right)⋮37\)mà \(999\left(10a+b\right)=37.27\left(10a+b\right)⋮37\)
=> \(\overline{cab}=100c+10a+b⋮37\)
A B C D M K
a) Xét \(\Delta\)ABM và \(\Delta\)KCM có: MK = MA ; MB = MC ; ^AMB = ^KMC ( đối đỉnh )
=> \(\Delta\)ABM = \(\Delta\)KCM => AB = KC (1)
Vì \(\Delta\)ABC cân có AM là đường trung tuyến => AM là đường trung trực hay KM là đường trung trực => KB = KC(2)
\(\Delta\)ABC cân => AB = AC (3)
Từ (1) ; (2) (3) => AB = AC = KB = KC => ABKC là hình thoi
b) ABKC là hình thoi => KC //AB => CD //AB mà theo đề AD //BC
=> ABCD là hình bình hành
c) \(\Delta\)ABC cân có AN kaf đường trung tuyến => AM vuông góc BC mà AD // BC => AD vuông AM => ^DAK = ^DAM = 90 độ
Ta có: BM = 1/2 . BC = 6 : 2 = 3 cm AB = 5 cm
\(\Delta\)ABM vuông tại M . Theo định lí Pitago => AM = 4 cm
=> AK = 2AM = 2.4 = 8cm
AD = BC = 6cm ( ABCD là hình bình hành )
=> S ( DAK ) = AD.AK : 2 = 6.8 : 2 = 24 ( cm^2)
d) Để ABKC kaf hình vuông; mà ABKC là hình thoi nên ^BAC = 90 độ
=> tam giác ABC Có thêm điều kiện vuông tại A thì ABKC là hình vuông.
4a^2 : (a+3)=1
=>a+3=4a2 : 1
a+3=4a.a
<=> 4a.a - a-3=0
a.(4a-1)-3=0
=>a.(4a-1)=3
=>a và 4a-1 thuộc Ư(3)={1;-1;3;-3}
với a =1=>4a-1=3<=>a=1(tm)
với a=-1=>4a-1=-3<=>a=-1/2(ktm)
với a=3=>4a-1=1<=>a=1/2(ktm)
với a= -3=>4a-1=-1<=>a=0(ktm)
vậy ....