K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(\left(x-1\right)^2+3x=31\)

\(\Leftrightarrow x^2-2x+1+3x=31\)

\(\Leftrightarrow x^2+x-30=0\)

Ta có \(\Delta=1^2+4.30=121,\sqrt{\Delta}=11\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+11}{2}=5\\x=\frac{-1-11}{2}=-6\end{cases}}\)

3 tháng 3 2020

\(\left(x-1\right)^2+3x=31\)

<=> x^2 -2x+1+3x=31

<=> x^2 +x+1=31

<=> x^2+x-30=0

<=> x^2 +6x-5x-30=0

<=> x(x+6)-5(x+6)=0

<=> (x+6)(x-5)=0

<=> x+6=0 hoặc x-5=0

<=> x=-6 hoặc x=5

6 tháng 3 2020

Hint: Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\).

21 tháng 5 2020

Theo giả thiết: \(xyz=x+y+z+2\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\)\(=\left(xy+yz+zx\right)+2\left(x+y+z\right)+3\)

\(\Leftrightarrow\left(xy+x+y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\). Đặt \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)

Khi đó a + b + c = 1 và \(x=\frac{1-a}{a}=\frac{b+c}{a}\);\(y=\frac{1-b}{b}=\frac{c+a}{b}\);\(z=\frac{1-c}{c}=\frac{a+b}{c}\)

Ta cần chứng minh \(x+y+z+6\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z+6\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2-\left(x+y+z\right)\)

\(\Leftrightarrow\sqrt{2\left(x+y+z+3\right)}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\sqrt{2\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\sqrt{\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)\(\ge\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}}\)

BĐT cuối hiển nhiên đúng vì đây là BĐT Bunyakovski do đó bài toán được chứng minh.

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)hay x = y = z = 2

3 tháng 3 2020

Trường THCS Hoàng Xuân Hãn

bạn tham khảo ( đề QB 18-19 đó )

3 tháng 3 2020

ko biết