K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

b: Ta có: ΔBAD=ΔBHD

=>DA=DH

mà DH<DC(ΔDHC vuông tại H)

nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

Do đó: ΔDAK=ΔDHC

=>DK=DC

=>ΔDKC cân tại D

d: Sửa đề: Chứng minh K,D,H thẳng hàng

Ta có: ΔDAK=ΔDHC

=>\(\widehat{ADK}=\widehat{HDC}\)

mà \(\widehat{HDC}+\widehat{ADH}=180^0\)(hai góc kề bù)

nên \(\widehat{ADK}+\widehat{ADH}=180^0\)

=>H,D,K thẳng hàng

17 tháng 3 2024

Mik xin cách giải bài này ạ :((

17 tháng 3 2024

P(x) = 5⁴ + 3x³ - 5x⁴ - 3x³ + 2x - 4

= -5x⁴ + (3x³ - 3x³) + 2x + (5⁴ - 4)

= -5x⁴ + 2x + 621

17 tháng 3 2024

tui ko hưủ đề baì

Xét ΔAHB và ΔAHC có

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{AHB}=\widehat{AHC}\)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

=>AH\(\perp\)BC

a: Xét ΔMAB và ΔMCD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔMAB=ΔMCD
=>AB=CD

Ta có: ΔMAB=ΔMCD

=>\(\widehat{MCD}=\widehat{MAB}\)

=>\(\widehat{MCD}=90^0\)

=>CD\(\perp\)CA

b: Xét ΔCBD có CB+CD>BD

mà CD=AB và BD=2BM

nen CB+BA>2BM

c: Ta có: AB=CD

mà AB<CB(ΔBAC vuông tại A)

nên CD<CB

Xét ΔCBD có CD<CB

mà góc CBD; gócCDB lần lượt là góc đối diện của các cạnh CD,CB

nên \(\widehat{CBD}< \widehat{CDB}\)

mà \(\widehat{CDB}=\widehat{ABD}\)(hai góc so le trong, CD//AB)

nên \(\widehat{CBD}< \widehat{ABD}\)

a) Do M là trung điểm của AC nên AM = MC.
- Do MD = MB và AM = MC nên tam giác AMD = tam giác BMC (các cạnh tương ứng bằng nhau).
=> Vậy AB = CD (do AB = BM và CD = DM) và ∠ACD = 90° (do ∠ACD = ∠AMB = 90°).
b) Do AB = CD và ∠ABC = ∠BCD (do ∠ABC + ∠BCD = 180°) nên tam giác ABC = tam giác BCD (các cạnh tương ứng bằng nhau).
=> Vậy BC = AB và AB + BC = 2AB > 2BM (do AB > BM).
c) Do ∠ABM + ∠CBM = 180° và ∠ABM = ∠CBM (do tam giác ABM = tam giác CBM) nên ∠ABM = ∠CBM = 90°.
=> Nhưng ∠CBM < 90° (do tam giác ABC vuông tại A và AC > AB) nên ∠ABM > ∠CBM.
~~~~~~
+) ∠ là góc nhé ^^

a: Xét ΔAMB và ΔAMC có

AM chung

\(\widehat{BAM}=\widehat{CAM}\)

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔAMB=ΔAMC

=>MB=MC

=>M là trung điểm của BC

c: ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

mà IH\(\perp\)BC

nên AM//IH

=>\(\widehat{BIH}=\widehat{BAM}\)

mà \(\widehat{BAC}=2\cdot\widehat{BAM}\)(AM là phân giác của góc BAC)

nên \(\widehat{BAC}=2\cdot\widehat{BIH}\)

a) Do AB = AC và AM là tia phân giác của góc A nên tam giác AMB cân tại A và tam giác AMC cân tại A.
- Ta có góc BAM = góc CAM (do AM là tia phân giác).
=> Vậy tam giác AMB = tam giác AMC (các cạnh tương ứng bằng nhau).
b) Do tam giác AMB = tam giác AMC nên BM = MC.
=> Vậy M là trung điểm của BC.
c) Do ∠BAI = ∠CAK (do AK là tia phân giác của ∠BAC) và ∠BAI = ∠BHI (do IH ⊥ BC và AI // BC) nên ∠CAK = ∠BHI.
- Lại có ∠ACK = ∠BHK (do CK = KH và AC // BH).
=> Vậy tam giác ACK = tam giác BHK (các góc tương ứng bằng nhau) nên ∠BAC = 2∠BIH (do ∠BAC = ∠ACK + ∠CAK = ∠BHK + ∠BHI = 2∠BIH).
~~~~~~
+) ∠ là góc nhé ^^

(– x^2).(2x^3 + 3x^2 – 2x + 5) 
= (- x^2 . 2x^3) + (- x^2 . 3x^2) + (- x^2 . (-2x)) + (- x^2 . 5)
= -2x^5 + (-3x^4 + 2x^3) + (-5x^2)
= -2x^5 - 3x^4 + 2x^3 - 5x^2

\(\left(-x^2\right)\left(2x^3+3x^2-2x+5\right)\)

\(=-x^2\cdot2x^3-x^2\cdot3x^2+x^2\cdot2x-x^2\cdot5\)

\(=-2x^5-3x^4+2x^3-5x^2\)

\(A+B=5x^4-4x^2+x-2+x^4+3x^2-4x\)

\(=\left(5x^4+x^4\right)+\left(-4x^2+3x^2\right)+\left(x-4x\right)-2\)

\(=6x^4-x^2-3x-2\)

$= (5x^4 – 4x^2 + x – 2) + (x^4 + 3x^2 – 4x)$
$= 6x^4 - x^2 - 3x - 2$
=> Vậy, A + B = $6x^4 - x^2 - 3x - 2$