K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

\(\frac{1}{\left|x-y\right|}.\sqrt{x^6\left(x-y\right)^2}=\frac{1}{\left|x-y\right|}.x^3.\sqrt{\left(x-y\right)^2}=\frac{1}{\left|x-y\right|}.x^3\left(x-y\right)=\frac{x^3\left(x-y\right)}{\left|x-y\right|}\)

8 tháng 8 2019

    1/|x-y| . √x^6 .(x-y)^2

= 1/y-x . √(x³)².(x-y)²

=1/y-x . x³ . y-x

=x³

Tk mình với bạn ơi. Đúng rồi nhé!!

CHÚC BẠN HỌC TỐT ✓✓

8 tháng 8 2019

D C B A 1 E M 1 P I F 1

Trên tia đối tia AB lấy P sao cho AP = BE

\(\Delta PAD=\Delta EBA\left(c.g.c\right)\)\(\Rightarrow\widehat{PDA}=\widehat{A_1}\)

Mà \(\widehat{D_1}=\widehat{E_1}\)( c/m )

Ta có : \(\widehat{PDE}+\widehat{DEF}=\widehat{PDA}+\widehat{D_1}+\widehat{FED}=\widehat{A_1}+\widehat{E_1}+\widehat{FED}=90^o\)

\(\Rightarrow EF\perp PD\)

Xét \(\Delta PBC\)và \(\Delta ECD\)có :

PB = EC ; \(\widehat{PBC}=\widehat{ECD}\); BC = CD 

\(\Rightarrow\Delta PBC=\Delta ECD\left(c.g.c\right)\)

\(\Rightarrow\widehat{CPB}=\widehat{E_1}\)

Ta có : \(\widehat{CPB}+\widehat{PID}=\widehat{E_1}+\widehat{EIB}=90^o\)

\(\Rightarrow CP\perp ED\)

do đó : F là trực tâm \(\Delta EPD\)

\(\Rightarrow DF\perp EP\)                          ( 1 )

Xét \(\Delta EPC\)có : \(PB\perp EC;EI\perp CP\) nên I là trực tâm \(\Delta EPC\)

\(\Rightarrow CM\perp EP\)                        ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow DF//IM\Rightarrow\frac{MI}{FD}=\frac{EI}{ED}=\frac{EM}{EF}\)   ( 3 )

\(IB//CD\Rightarrow\frac{EB}{EC}=\frac{EI}{ED}\)                 ( 4 )

Từ ( 3 ) và ( 4 ) suy ra \(\frac{MI}{FD}=\frac{EB}{EC}\Rightarrow BM//FC\)

\(\Rightarrow BM\perp DE\)

p/s : mệt

8 tháng 8 2019

\(mx^2+2\left(m-2\right)x+m-1=0\)   ( đkxđ : m khác 0 )

PT có 2 nghiệm phân biệt 

\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\x_1x_2=\frac{m-1}{m}\\x_1+x_2=\frac{-\left(2m-4\right)}{m}\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-2\right)^2-\left(m-1\right)m>0\left(1\right)\\x_1x_2=\frac{m-1}{m}\\x_1+x_2=\frac{-\left(2m-4\right)}{m}\end{cases}}}\)

giải ( 1 ) ta được : \(m< \frac{4}{3}\)              ( * )

PT có 2 nghiệm phân biệt nhỏ hơn 1 \(\Leftrightarrow\hept{\begin{cases}x_1< 1\\x_2< 1\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1-1< 0\\x_2-1< 0\end{cases}}\)

\(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)>0\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1>0\Leftrightarrow\frac{m-1}{m}+\frac{2m-4}{m}+1>0\)

\(\Leftrightarrow\frac{4m-5}{m}>0\left(2\right)\)

giải ( 2 ) ta được : \(\orbr{\begin{cases}m>\frac{5}{4}\\m< 0\end{cases}}\)      ( ** )

từ ( * ) và ( ** ) , kết hợp điều kiện ta có : \(\orbr{\begin{cases}m< 0\\\frac{5}{4}< m< \frac{4}{3}\end{cases}}\)

8 tháng 8 2019

bạn NaNis ơi. mình làm xong bạn sửa đề là sao. lỡ mọi người hiểu lầm thì sao

đề bài yêu cầu j ạ

8 tháng 8 2019

giải pt

8 tháng 8 2019

MN ƠI GIÚP E