K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

Gọi x là số học sinh nhận vở của lớp ( x là số tự nhiên dương ).

Theo đề bài, ta có: 12x+10=13x-10 <=> x=20 ( thỏa đk ).

Số vở làm phần thưởng là: 12.20+10=250 (quyển).

Đáp số: 20 học sinh tiên tiến; 250 quyển vở làm phần thưởng.

4 tháng 3 2020

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}+\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}+\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

Để ý thấy mấy cái trong ngoặc đều < 0 nên VT=0 khi x=y=z=0

Khi đó S=0

Vậy

4 tháng 3 2020

giúp mình với ạ

mình đang gấp lắm

4 tháng 3 2020

Tam giác ở trong hay ngoài hình tròn?

4 tháng 3 2020

Ta có:

\(P=\left(\frac{1}{x^2+y^2+z^2}+\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\right)+\frac{5}{12}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\ge\frac{\left(1+1+1+1\right)^2}{x^2+y^2+z^2+3xy+3yz+3zx}+\frac{5}{12}.\frac{\left(1+1+1\right)^2}{xy+yz+zx}\)

\(=\frac{16}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}+\frac{5}{12}.\frac{9}{xy+yz+zx}\)

\(\ge\frac{16}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}+\frac{5}{12}.\frac{9}{\frac{\left(x+y+z\right)^2}{3}}\)

\(=\frac{93}{4\left(x+y+z\right)^2}=\frac{93}{4\left(2019\right)^2}\)

Dấu "=" xảy ra <=> x = y = z = 2019/3.

4 tháng 3 2020

\(\frac{3}{2}=a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\)

\(\le\frac{a^2+1-b^2}{2}+\frac{b^2+1-c^2}{2}+\frac{c^2+1-a^2}{2}=\frac{3}{2}\)

=> \(\frac{3}{2}\le\frac{3}{2}\)( chỉ xảy ra dấu "=" )

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{cases}}\)=> \(a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)

=> \(B=a^2+b^2+c^2=\frac{3}{2}\)