cho tam giác ABCv tại A (ab<ac) gọi I, M,K lần lượt là trung điểm của AB,BC,AC
a) cm :tg AIMK là hcn
b)vẽ ah v bc tại h . tg ikmh là hình gì
c) cm : ih v góc với hk
d) cho ik = 2m . tính góc abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý bơ du ta được :
\(2^3+3.2^2+2a+5=8+12+2a+5=25+2a\)
Vậy \(f\left(x\right)=25+2a\)
Sửa lại đề: \(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}+\frac{1}{1-x}\)
\(P=\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}+\frac{1}{1-x}\)
\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2-1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{x^2+2+x^2-1-x^2-x-1}{MTC}=\frac{x^2-x}{MTC}\)
\(=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x}{x^2+x+1}\)
BT <=>
\(A=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-9-x-3}{MTC}=\frac{x^2-x-12}{MTC}\)
A = \(\frac{x+2}{x+3}\)\(-\frac{5}{X^2+X-6}\)\(+\frac{1}{2-X}\)
A= \(\frac{x+2}{x+3}\)\(-\frac{5}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{1}{X-2}\)
A = \(\frac{\left(X+2\right)\left(X-2\right)}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{5}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{X+3}{\left(X-2\right)\left(X+3\right)}\)
A= \(\frac{\left(X+2\right)\left(X-2\right)-5-\left(X+3\right)}{\left(X-2\right)\left(X+3\right)}\)
A= \(\frac{X-4-5-X-3}{\left(X-2\right)\left(X+3\right)}\)
A= \(-\frac{12}{\left(X-2\right)\left(X+3\right)}\)
Sửa đề : \(x^2-y^2+x-y\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)=\left(x-y\right)\left(x+y+1\right)\)
hay sửa như này =))
\(x^2-y^2-x-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-y^2+x-y\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)
A{ờ.........................................tao cũng đéo biết chứng minh câu a nữa hì hì!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
B .2534cm2 mày ạ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
C .2345 % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~BỐ MÀY CẮT ĐẦU MOI~
A B C M D E N P I
a) Xét tứ giác ABME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\) => ABME là HCN
b)
Xét t/giác ABC vuông tại A có AM là đường trung tuyến => AM = BM = MC = 1/2BC
=> tam giác AMC và t/giác AMB cân
t/giác AMB cân tại M có MD là đường cao => MD cx là đường trung tuyến
=> BD = AD = 1/2AB = 1/2.6 = 3 (cm)
T/giác AMC cân tại M có ME là đường cao => ME cx là đường trung tuyến
=> AE = EC = 1/2AC = 1/2.8 = 4 (cm)
SADME = AD.AE = 3.4 = 12 (cm2)
c) Xét tứ giác AMNC có EM = EN (gt)
AE = EC (cmt)
MN \(\perp\)AC (gt)
=> AMNC là hình thoi
d) Gọi I là giao điểm của BP với AM
Xét t/giác AIE và t/giác CPE
có: \(\widehat{AIE}=\widehat{CPE}\) (đđ)
AE = EC (cmt)
\(\widehat{IAE}=\widehat{ECP}\)(slt vì AM // NC)
=> AIE = t/giác CPE (g.c.g)
=> AI = PC (2 cạnh t/ứng)
CMTT: IM = NP
Xét t/giác ABC có AM và BE là 2 đường trung tuyến cắt nhau tại I
=> I là trong tâm của t/giác ABC => IM/AI = 1/2
=> NP/PC = 1/2
Với \(x\ne\pm3\)ta có : \(A=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x+3\right)\left(x-4\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{x+2}{x+3}\)
\(=\frac{x^2-x-12-\left(x^2-4x+3\right)+21}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}\)
\(=\frac{3\left(x+2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}=\frac{3}{x-3}\)
\(A=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right)\div\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{x-4}{x-3}-\frac{x-1}{x+3}\right)\div\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right)\div\left(\frac{x+3}{x+3}-\frac{1}{x+3}\right)\)
\(=\left(\frac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}\right)\div\left(\frac{x+3-1}{x+3}\right)\)
\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}\div\frac{x+2}{x+3}\)
\(=\frac{3\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\div\frac{x+2}{x+3}\)
\(=\frac{3\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\times\frac{x+3}{x+2}\)
\(=\frac{3\left(x+2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}=\frac{3}{x-3}\)