K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

Ta có:

\(P=\left(\frac{1}{x^2+y^2+z^2}+\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\right)+\frac{5}{12}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\ge\frac{\left(1+1+1+1\right)^2}{x^2+y^2+z^2+3xy+3yz+3zx}+\frac{5}{12}.\frac{\left(1+1+1\right)^2}{xy+yz+zx}\)

\(=\frac{16}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}+\frac{5}{12}.\frac{9}{xy+yz+zx}\)

\(\ge\frac{16}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}+\frac{5}{12}.\frac{9}{\frac{\left(x+y+z\right)^2}{3}}\)

\(=\frac{93}{4\left(x+y+z\right)^2}=\frac{93}{4\left(2019\right)^2}\)

Dấu "=" xảy ra <=> x = y = z = 2019/3.

4 tháng 3 2020

\(\frac{3}{2}=a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\)

\(\le\frac{a^2+1-b^2}{2}+\frac{b^2+1-c^2}{2}+\frac{c^2+1-a^2}{2}=\frac{3}{2}\)

=> \(\frac{3}{2}\le\frac{3}{2}\)( chỉ xảy ra dấu "=" )

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{cases}}\)=> \(a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)

=> \(B=a^2+b^2+c^2=\frac{3}{2}\)

4 tháng 3 2020

Gọi số hàng là a 

Tổng số cây là A

nếu mỗi hàng trồng 10 cây thì thừa 5 cây tức A=10a+5

Nếu mỗi hàng trồng 11 cây thì thừa 1 hàng tức A=11(a-1)

Như vậy ta có :10a+5=11(a-1)

giải được a=16

vậy có 16 hàng và tổng số cây là 165

x^2-xy+y^2=x^2.y^2+3

⇔x²-xy+y²-x²y²=3

⇔Nghiệm ko thỏa mãn

Vì c, d là 2 số nguyên liên tiếp nên \(d=c+1\)

Thay vào đẳng thức \(a-b=a^2c-b^2d\)ta được

\(a-b=a^2c-b^2\left(c+1\right)\)

\(\Leftrightarrow\left(a-b\right)\left[c\left(a+b\right)-1\right]=b^2\)

Dễ dàng chứng minh được \(\left(a-b,c\left(a+b\right)-1\right)=1\)

nên \(\left|a-b\right|\)là số chính phương

4 tháng 3 2020

Tui lười nghĩ đoạn CM nguyên tố cùng nhau lắm @@