Cho tam giác ABC cân tại A, cho H là trung điểm của BC
a) C/M tam giác ABH = tam giác ACH
b) Từ B vẽ đoạn thẳng song song với AC và cắt AH tại K. C/M AB=BK
c) Cho M là trung điểm của AC, từ M kẻ đạn thẳng vuông góc với AH và cắt AH tại I. C/M AI=BI
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
b: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
mà \(\widehat{BAH}=\widehat{CKA}\)(hai góc so le trong, BA//CK)
nên \(\widehat{CAK}=\widehat{CKA}\)
=>ΔCAK cân tại C
=>CA=CK
mà CA=BA
nên CK=BA
Ta có: ΔAHB=ΔAHC
=>\(\widehat{AHB}=\widehat{AHC}\)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
=>AH\(\perp\)BC
Ta có: ΔCAK cân tại C
mà CH là đường cao
nên H là trung điểm của AK
Xét ΔBAK có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAK cân tại B
=>BA=BK
c: Đề sai rồi bạn