Tìm p nguyên tố để 2p2 - 1, 2p2 + 3 và 3p2 + 4 là các số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=x-y-1\\\left(y+\sqrt{x}\right)^2-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2\sqrt{x}+1=x-y-1\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x}-y=2\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(\ge0\right)\\y=b\end{cases}}\)
=> hệ phương trình \(\Leftrightarrow\hept{\begin{cases}2a-b=2\\\left(b+a-ab\right)\left(b+a+ab\right)=0\end{cases}}\)
Tham khảo nhé~
gọi x là số hàng ghế ban đầu
y là số ghế 1 hàng ban đầu, đk: x>0, y là số nguyên dương
x.y=300
(x+1).(y+2)=357
x.y+2x+y+2=357
300+2x+y+2=357
2x+y=55
y=55-2x thay vào pt x.y=300
x.(55-2x)=300
55x-2x2=300
x=20 hay x=7.5
y=15 hay y=40
gọi x là số hàng ghế ban đầu
y là số ghế 1 hàng ban đầu, đk: x>0, y là số nguyên dương
x.y=300
(x+1).(y+2)=357
x.y+2x+y+2=357
300+2x+y+2=357
2x+y=55
y=55-2x thay vào pt x.y=300
x.(55-2x)=300
55x-2x2=300
x=20 hay x=7.5
y=15 hay y=40
a) Đkxđ: \(x\ne4\)
Thay x=9 vào A ta được:
\(\frac{9+3}{\sqrt{9}-2}=\frac{12}{3-2}=12\)
b)Ta có \(B=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(\Rightarrow B=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c) TA có \(\frac{4B}{A}=\frac{4\sqrt{x}}{\sqrt{x}-2}:\frac{x+3}{\sqrt{x}-2}=\frac{\left(4\sqrt{x}\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(x+3\right)}\)
\(=\frac{4\sqrt{x}}{x+3}\)
Để \(\frac{4B}{A}=\frac{4\sqrt{x}}{x+3}\in Z\)thì \(x+3\inƯ\left(4\right);x=a^2\left(a\in Z\right)\)
Với \(x+3\inƯ\left(4\right)\Rightarrow x\in\left\{-5;-4;-2;\pm1;7\right\}\)mà \(x=a^2\Rightarrow x=1\left(TM\right)\)
Vậy x=1
Hok tốt!
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
Gửi bạn nhé, bài này mình đã làm rồi , chúc bạn học tốt !
p2p2 là số chính phương nên p2p2 chia 7 dư 0,1,2 hoặc 4
- Nếu p2⋮7p2⋮7 thì p⋮7⇒p=7p⋮7⇒p=7 , thay vào thỏa mãn
-Nếu p2p2 chia 7 dư 1 thì 3p2+43p2+4 ⋮7⇒⋮7⇒ trái với đề bài
- Nếu p2p2 chia 7 dư 2 3p2+1⋮7⇒3p2+1⋮7⇒ vô lí
-Nếu p2p2 chia 7 dư 4 2p2−1⋮7⇒2p2−1⋮7⇒ vô lí
Vậy p=7