tìm đa thức A trong đẳng thức\(\frac{x^2-2}{x+1}\)=\(\frac{A}{2x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ngoài ra ta đặt BC=a;AC=b;AB=c thì ta có một đẳng thức cực kỳ đẹp sau đây:\(\frac{IA^2}{bc}+\frac{IB^2}{ca}+\frac{IC^2}{ab}=1\)
A = 1/(x - 2) + (x^2 - x - 2)/(x^2 - 7x + 10) - (2x - 4)/(x - 5)
A = 1/(x - 2) + ((x + 1)(x - 2))/((x - 2)(x + 5)) - (2x - 4)/(x - 5)
A = 1/(x - 2) + (x + 1)/(x - 5) - (2x - 4)/(x - 5)
A = 1/(x - 2) + (x - (2x - 4) + 1)/(x - 5)
A = 1/(x - 2) - 1
a) Trong tam giác ABC có OE // BC nên \(\frac{AE}{AB}=\frac{AO}{AC}\)( theo định lí Ta-let )
Trong tam giác ACD có OF // CD nên \(\frac{AF}{AD}=\frac{AO}{AC}\) ( theo định lí Ta-let )
Vậy \(\frac{AE}{AB}=\frac{AF}{AD}\Rightarrow FE//BD\)( áp dụng định lí Ta-let đảo tong tam giác ABD )
b) Tương tự trong tam giác ABC có : OG // AB nên \(\frac{CG}{BG}=\frac{CO}{OA}\)
Trong tam giác ACD có OH // AD nên \(\frac{CH}{DH}=\frac{CO}{OA}\)
Vậy \(\frac{CG}{GB}=\frac{CH}{GB}\Rightarrow CG.DH=CH.GB\)
Xét tam giác ABC có OE // BC . áp dụng định lý ta-lét ta có
AE/AB=AO/AC (1)
Xét tam giác ADC có OF//CD . áp dụng định lý ta-lét ta có
AF/AD=AO/AC (2)
TỪ (1)(2) suy ra AE/AB=AF/AD
Xét tam giác ABD có AE/AB=AF/AD (CMT) . áp dụng định ý ta-lét đảo ta suy ra EF//BD (đpcm)
câu b )
áp dụng định lý ta -lét cho tam giác ACD có OH//AD suy ra
CH/DH=CO/AO (3)
Aps dụng định lý ta-lét cho tam giác abc có OG//AB có
CG/GB=OC/OA (4)
TỪ (3)(4) suy ra CH/DH=CG/GB
Suy ra CH.GB=HD.CG (đpcm)
\(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3\)
\(\Rightarrow a+b^2+c^3\le a+b+c\)
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
=> đpcm
\(\frac{1}{x^2+3}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{1}{2}\left(27-\frac{1}{x+9}\right)\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}=27-\frac{1}{x+9}\)
Mà
\(\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}\)
\(=\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)
\(=\frac{1}{x}-\frac{1}{x+9}\)
\(\Rightarrow\frac{1}{x}=27\Rightarrow x=\frac{1}{27}\)
a. Trong ΔABC co OE // BC nen : AE/AB = AO/AC (ta let)
Trong ΔACD co OF// CD nen : AF/AD = AO/AC ( ----)
Vay AE/AB = AF/AD => FE //BD (ap dung Ta let dao trong ΔABD)
b. Tuong tu Trong ΔABC co OG//AB nen CG/BG = CO/OA
Trong ΔACD co OH // AD nen : CH/DH = CO/OA
Vậy CG/GB=CH/GB=>CG.DH=CH.BG
k mk nha
\(\frac{x^2-2}{x+1}=\frac{A}{2x+2}\Rightarrow A=\frac{\left(x^2-2\right)\left(2x+2\right)}{x+1}\Leftrightarrow A=\frac{\left(x^2-2\right)\left(x+1\right)2}{x+1}\Rightarrow A=2\left(x^2-2\right)\)