K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Hint: Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\).

21 tháng 5 2020

Theo giả thiết: \(xyz=x+y+z+2\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\)\(=\left(xy+yz+zx\right)+2\left(x+y+z\right)+3\)

\(\Leftrightarrow\left(xy+x+y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\). Đặt \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)

Khi đó a + b + c = 1 và \(x=\frac{1-a}{a}=\frac{b+c}{a}\);\(y=\frac{1-b}{b}=\frac{c+a}{b}\);\(z=\frac{1-c}{c}=\frac{a+b}{c}\)

Ta cần chứng minh \(x+y+z+6\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z+6\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2-\left(x+y+z\right)\)

\(\Leftrightarrow\sqrt{2\left(x+y+z+3\right)}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\sqrt{2\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\sqrt{\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)\(\ge\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}}\)

BĐT cuối hiển nhiên đúng vì đây là BĐT Bunyakovski do đó bài toán được chứng minh.

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)hay x = y = z = 2

3 tháng 3 2020

Trường THCS Hoàng Xuân Hãn

bạn tham khảo ( đề QB 18-19 đó )

3 tháng 3 2020

ko biết

ĐK \(\hept{\begin{cases}x\ne0\\x+y\ne0\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x}=a\\x+y=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}8a^2+b=\frac{3}{2a}\\b^2+a=\frac{3}{2b}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}16a^3+2ab=3\\2b^3+2ab=3\end{cases}}\)

\(\Rightarrow16a^3=2b^3\Rightarrow8a^3=b^3\)

\(\Rightarrow2a=b\)

\(\Rightarrow\frac{2}{x}=x+y\Leftrightarrow x^2+xy-2=0\)

Rút y thay vào hệ là ra

a, Với m=4 ta có \(x^2+3x-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)

b, Khi x=2 ta có \(10-m=0\Rightarrow m=10\)

Với m=10 ta có \(x^2+3x-10=0\)\(\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

Nghiệm kia là x=-5

c, Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=-3\\x_1x_2=-m\end{cases}}\)

\(\Rightarrow2\left(-3\right)+x_2=13\)

Đến đây dễ rồi