K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(1,\hept{\begin{cases}x+\frac{3x-y}{x^2+y^2}=3\left(1\right)\\y-\frac{x+3y}{x^2+y^2}=12\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow x-y+\frac{4x-4y}{x^2+y^2}=-9\)

3 tháng 3 2020

Bn có nhầm đâu ko thế trừ thì đổi dấu thành \(\frac{3x-y}{x^2+y^2}+\frac{x+3y}{x^2+y^2}=\frac{4x+2y}{x^2+y^2}\)

3 tháng 3 2020

                                                        bài giải

Tổng số phần là

   2+1=3(pần)

Số học sinh nam của lớp 9A là

 42:3x2=28(học sinh)

Số học sinh nữ của lớp 9A là

42-28=14(học sinh)

       Đáp số : 28 học sinh nam

                      14 học sinh nữ

3 tháng 3 2020

(bạn tự kẻ sơ đồ)

Số học sinh nam của lớp 9A là:

42:(2+1)x2=28(học sinh)

Số học sinh nữ lớp 9A là:

42-28=14(học sinh)

đ/s

3 tháng 3 2020

A B C D F E H J K

Hướng dẫn: 

Ta chứng minh: ^CBJ + ^JKC = 180o 

Có: ^CBJ + ^JKC =  \(\frac{1}{2}\).^CBA + ^JKD + ^DKC =  (a)

+) \(\Delta\)BFD ~  \(\Delta\)ECD  (1)  => \(\Delta\)JFD ~ \(\Delta\)KDC  => \(\Delta\)DKJ ~ \(\Delta\)DCF (2)

Từ (2) => ^JKD = ^FCD 

K là giao điểm 3 đường phân giác của \(\Delta\)DEC => DKC = 90o + ^DEC:2

(a) = \(\frac{\widehat{CBA}}{2}+\widehat{FCB}+90^o+\frac{\widehat{DEC}}{2}\)

(1) => ^DEC = ^DBF = ^CBA 

(a) = \(\frac{\widehat{CBA}}{2}+\widehat{FCB}+90^o+\frac{\widehat{CBA}}{2}\)

=  \(\widehat{CBA}+\widehat{FCB}+90^o=180^o\)

=> BJKC nội tiếp

3 tháng 3 2020

\(A=\frac{x-2+3\sqrt{x-2}+2}{x-2+4\sqrt{x-2}+3}\)  

Đặt: \(t=\sqrt{x-2}\ge0\)

\(A=\frac{\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+3\right)}=\frac{t+2}{t+3}=1-\frac{1}{t+3}\ge1-\frac{1}{0+3}=\frac{2}{3}\)

Dấu "=" xảy ra <=> t = 0 hay x = 2

Vậy min A =2/3 tại x =2

3 tháng 3 2020

Nè bạn :) 

Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)

\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)

\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)

Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)

3 tháng 3 2020

\(\left(x-1\right)^2+3x=31\)

\(\Leftrightarrow x^2-2x+1+3x=31\)

\(\Leftrightarrow x^2+x-30=0\)

Ta có \(\Delta=1^2+4.30=121,\sqrt{\Delta}=11\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+11}{2}=5\\x=\frac{-1-11}{2}=-6\end{cases}}\)

3 tháng 3 2020

\(\left(x-1\right)^2+3x=31\)

<=> x^2 -2x+1+3x=31

<=> x^2 +x+1=31

<=> x^2+x-30=0

<=> x^2 +6x-5x-30=0

<=> x(x+6)-5(x+6)=0

<=> (x+6)(x-5)=0

<=> x+6=0 hoặc x-5=0

<=> x=-6 hoặc x=5