Cho phương trình: x4-2mx2+2m-1 . Tìm giá trị m để phương trình có
bốn nghiệm x1,x2,x3,x4sao cho: x1<x2<x3<x4và x4-x1=3(x3-x2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DK \(\hept{\begin{cases}x\ge1\\y\ge1\end{cases}}\)
TH x=y=1 thay vao ta thay thoa man vay {x;y}={1;1} la 1 nghiem
TH x,y khac 1
Xet phuong trinh (1)
\(\sqrt{x-1}+\sqrt{x}\left(3\sqrt{x}-y\right)+x\sqrt{x}=3y+\sqrt{y-1}\)
<=> \(\left(\sqrt{x-1}-\sqrt{y-1}\right)+3x-3y+x\sqrt{x}-y\sqrt{x}=0\)
<=> \(\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+3\left(x-y\right)+\sqrt{x}\left(x-y\right)=0\)
<=> \(\left(x-y\right)\left(\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+3+\sqrt{x}\right)=0\)
<=> x=y ( do cai trong ngoac thu 2 vo nghiem)
the x=y vao phuong trinh (2) duoc
\(3x^3+4=4x^2+3x\)
<=> \(3x^3-4x^2-3x+4=0\)
<=> \(\left(x-1\right)\left(x+1\right)\left(3x-4\right)=0\)
<=> \(\orbr{\begin{cases}x=y=\pm1\\x=y=\frac{4}{3}\end{cases}}\)
Vay {x;y} =....
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)
\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x-2=0\)
hoặc \(x+2=0\)
hoặc \(2x+3=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-2\)
hoặc \(x=-\frac{3}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x-4=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=4\)
hoặc \(x=1\)
hoặc \(x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
d) \(x^4-3x^3+3x^2-x=0\)
\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)
e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
g) \(x^3+3x^2+3x+1=4x+4\)
\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(x=1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )
Ta có :
\(\sqrt{4a^2+12}=\sqrt{4a^2+4ab+2c\left(a+b\right)}=\sqrt{\left(2a+c\right)\left(2a+2b\right)}\)
\(\le\frac{4a+2b+c}{2}\)
Tương tự : \(\sqrt{4b^2+12}\le\frac{4b+2a+c}{2}\); \(\sqrt{c^2+12}=\sqrt{\left(2a+c\right)\left(2b+c\right)}\le\frac{2a+2b+2c}{2}\)
\(\Rightarrow\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}\le\frac{4a+2b+c+4b+2a+c+2a+2b+2c}{2}\)
\(=4a+4b+2c\)
\(\Rightarrow\frac{2a+2b+c}{\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}}\ge\frac{2a+2b+c}{4a+4b+2c}=\frac{1}{2}\)
Dấu "=" xảy ra khi a = b = 1 ; c = 2
nhận thấy x = 0 không là nghiệm của phương trình
Chia 2 vế phương trình cho x2, ta được :
\(x^2-9x+24-\frac{27}{x}+\frac{9}{x^2}=0\) ( 1 )
đặt \(t=x+\frac{3}{x}\)
( 1 ) \(\Leftrightarrow\left(x+\frac{3}{x}\right)^2-9\left(x+\frac{3}{x}\right)+18=0\)
\(\Leftrightarrow t^2-9t+18=0\Leftrightarrow\left(t-6\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=3\end{cases}}\)
Khi đó : \(\orbr{\begin{cases}x+\frac{3}{x}=6\Leftrightarrow x=3\pm\sqrt{6}\\x+\frac{3}{x}=3\Leftrightarrow x\in\varnothing\end{cases}}\)
Ban co de hsg Hai Phong nam 2019-2020 ko cho mik xin voi
a) dung phuong h
b) Ap dung cau a va bien doi mot chut
c) chua nghi ra
ĐK: \(x\ge2\)
<=>\(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{\left(x-1\right)\left(x+3\right)}+\sqrt{x+3}-\sqrt{x-2}=0\)
<=> \(\sqrt{x-1}\left(\sqrt{x-2}-\sqrt{x-3}\right)-\left(\sqrt{x-2}-\sqrt{x-3}\right)=0\)
<=> \(\left(\sqrt{x-2}-\sqrt{x-3}\right)\left(\sqrt{x-1}-1\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x-2}=\sqrt{x-3}\left(loai\right)\\\sqrt{x-1}=1\end{cases}}\)
<=> x -1 = 1
<=> x = 2 ( tm đk)