K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

=\(\sqrt[3]{64.2}+\sqrt[3]{-125.2}-7\sqrt[3]{8.2}\)

\(4\sqrt[3]{2}-5\sqrt[3]{2}-14\sqrt[3]{2}=-15\sqrt[3]{2}\)

17 tháng 8 2019

A B C E D F

                                                                               Xét \(\Delta ABF\)có:

                                                                                  \(CD//BF\left(gt\right)\)

                                                                                   \(D\varepsilon AB;E\varepsilon AF\)

\(\Rightarrow\frac{AC}{AF}=\frac{AD}{AB}\)(Định lý Ta-let)

\(\Rightarrow AC.AB=AF.AD\)

mà \(AB=AC\)(vì \(\Delta ABC\)cân tại A)

\(\Rightarrow AC^2=AF.AD\)(1)

Vì \(BE\perp AC\)(gt) \(\Rightarrow\Delta AEB\)vuông tại E

Vì \(CD\perp AB\)(gt) \(\Rightarrow\Delta ACD\)vuông tại D

                                                Xét  \(\Delta AEB\)vuông tại E và  \(\Delta ACD\)vuông tại D có

                                                                     \(\widehat{BAC}\)chung

                                                                     \(AB=AC\)(cmt)

\(\Rightarrow\Delta AEB=\Delta ADB\)(TH: cạnh huyền,góc nhọn)

\(\Rightarrow AE=AD\)(2 cạnh tương ứng) (2)

Từ (1) và (2) đpcm

Đây là cách giải của mình ạ

17 tháng 8 2019

\(\text{Hình bạn tự vẽ ^_^}\)

\(\text{a)Ta có: }AB^2=HB.BC=1,8.5=9\)

\(\Rightarrow AB=\sqrt{9}=3\left(\text{cm}\right)\)

\(\text{Lại có: }HC=BC-BH=5-1,8=3,2\left(\text{cm}\right)\)

\(\text{và: }AH^2=BH.CH=1,8.3,2=5,76\)

\(\Rightarrow AH=\sqrt{5,76}=2,4\left(\text{cm}\right)\)

\(\text{b) vì M là trung điểm BC nên }BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\left(\text{cm}\right)\)

\(\text{Ta lại có: }AC^2=CH.BC=3,2.5=16\)

\(\Rightarrow AC=\sqrt{16}=4\left(\text{cm}\right)\)

\(\text{Xét }\Delta DMC\text{ và }\Delta BAC\text{ có:}\)

\(\widehat{DMC}=\widehat{BAC}=90^o\)

\(\widehat{C}\text{ là góc chung}\)

\(\text{ }\Rightarrow\Delta DMC\text{ đồng dạng với }\Delta BAC\)

\(\Rightarrow\frac{DM}{AB}=\frac{DC}{BC}=\frac{CM}{AC}=\frac{2,5}{4}=0,625\left(\text{Tỉ số đồng dạng}\right)\)

\(\text{Vậy }\frac{S_{DMC}}{S_{BAC}}=\left(0,625\right)^2=\frac{25}{64}\)

17 tháng 8 2019

a, \(AB=\sqrt{BH\cdot BC}=\sqrt{1,8\cdot5}=3\)

\(AH=\sqrt{AB^2-BH^2}=\sqrt{3^2-1,8^2}=2,4\)

b, \(\frac{S_{ABC}}{S_{DMC}}=\frac{MC^2}{BC^2}=\frac{1}{4}\)

c,\(\Delta ABC~\Delta MDC\Rightarrow\frac{BC}{DC}=\frac{AC}{MC}\Rightarrow AC\cdot CD=\frac{1}{2}BC^2\)

d,Cái này bạn tự tính nhá

Mk hơi lười nên làm hơi tắt có j thông cảm mk nha

17 tháng 8 2019

Để bài toán trông quen thuộc hơn:

Đặt a =x; \(\frac{1}{b}=y\) thì bài toán trở thành:

Cho x, y > 0 thỏa mãn x + y =1. CMR: \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{25}{2}\).

-------------------------------------------------------------------------

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2=\frac{25}{2}^{\left(đpcm\right)}\)

P/s: Is it true?

18 tháng 8 2019

Xí, hôm qua buồn ngủ quá làm thiếu:V

\(VT\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)(đpcm)

17 tháng 8 2019

gọi công xuất vòi thứ nhất là x ( phần )

----------------------------  hai  là y ( phần ) 

(x,y > 0)

ta có :(x+y)12=1 =>x+y=1/12    (1)

(x+y)8+3,5.2.x=1=>15x+8y=1      (2)

từ (1) và (2) lập hệ phương trình:\(\hept{\begin{cases}x+y=\frac{1}{12}\\15x+8y=1\end{cases}}\Rightarrow\hept{\begin{cases}8x+8y=\frac{2}{3}\\15x+8y=1\end{cases}}\Rightarrow\hept{\begin{cases}7x=\frac{1}{3}\\x+y=\frac{1}{12}\end{cases}}\hept{\begin{cases}x=\frac{1}{21}\\y=\frac{1}{28}\end{cases}}\Rightarrow\)

=>vòi thứ nhất chảy đầy bể trong số giờ là:21 giờ

vòi thứ hai chảy đầy bể trong 28 giờ

vậy kết luận lấy nha

18 tháng 8 2019

\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left[\left(a-b\right)+\left(c-a\right)\right]+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left(a-b\right)+c^2a^2\left(c-a\right)-b^2c^2\left(c-a\right)\)

\(=\left(a-b\right)b^2\left(a-c\right)\left(a+c\right)+\left(c-a\right)c^2\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(ab^2+cb^2-c^2a-c^2b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+ac+bc\right)\)

20 tháng 8 2019

t làm bên h rồi mà? Làm quá lâu rồi luôn ấy! Đáp án y chang bạn Kid:v

Câu hỏi của Trần Minh Hiển - Toán lớp 9 (không biết AD đã fix lỗi ko dán link h vào olm chưa, nếu chưa ib t gửi full link, nhớ kèm theo link câu hỏi này là ok.)

ĐK x bất kì

\(\sqrt{x^2+24}=24-x^4\)

\(\Leftrightarrow x^2+24=576-48x^4+x^8\)

\(\Leftrightarrow x^8-48x^4-x^2+552=0\)

Giải ra là tìm được x

17 tháng 8 2019

Ha Ha.. Phương trình Bậc 8 mình chưa làm bao giờ haha!!

17 tháng 8 2019

ko ghi lại đề

\(8x^2+8x+6=\left(5x+4\right)\sqrt{x^2+3}\)\(3\)

bình hai vế ta đc

\(64x^2+64x+36=\left(5x+4\right)^2x^2+3\)

\(64.\left(x^2+x\right)+36=25x+16x^2+3\)

\(64.\left(x^2+x\right)+36=16\left(x+x^2\right)+9+3\)

\(64\left(x^2+x\right)+36=16\left(x+x^2\right)+12\)

\(=64-\left(x^2+x\right)+36-16\left(x+x^2\right)-12\)

\(=72\)

25 tháng 9 2019

bài nay ko cần điều kiện