cho tam giác ABC (AB<AC), nội tiếp đường tròn tâm (O) ,đường cao AH (H thuộc Bc) ,AH cắt đường tròn ở P ,AO cắt đường tròn ở E .
a) So sánh hai góc BAH và góc OAC
b) Tứ giác BCED là hình gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ ptt 2
=>x=4-my
thay vào pt 1 ta đc:
m(4-my)+4y=10-m
=>4m-m^2y+4y=10-m
=> m^2y-4y+10-5m=0
no duy nhất x,y nên pt trên cs 1 no
=> đenta phẩy =0
=> 4-y(-5m)=0
5+5ym=0
=>ym=0
=>y=0
vậy đpcm
ak nhầm,
m^2y-4y+10-5m=0
=> denta =25-4y(-4y+10)=0
=>25+16y^2-40y=0
=>16y^2-40y+ 25=0
y=1.25
=> đpcm
vô lý
a) Vì AB là tiếp tuyến (O)
=> AB⊥OB
=> ABOˆABO^=900=900
Vì AC là tiếp tuyến (O)
=> AC⊥OC
=>ACOˆACO^ =900=900
Ta có: ABOˆ+ACOˆABO^+ACO^ =900+900=1800=900+900=1800
=> Tứ giác ABOC nội tiếp đường tròn. (theo dấu hiệu nhận biết tứ giác nội tiếp)
b) Vì tiếp tuyến AB cắt tiếp tuyến AC tại A
⇒{AB=ACBO=CO⇒{AB=ACBO=CO
⇒⇒ AO là đường trung trực ứng BC
⇒⇒ AO⊥BC ( mà E∈BC)
⇒⇒ BE⊥AO (đpcm)
Xét ΔABO có: ABOˆABO^ =900=900 (cmtrn)
BE⊥AO (cmtrn)
⇒⇒ Áp dụng hệ thức lượng trong tam giác vuông.
⇒⇒ AO⋅OE=OB2AO⋅OE=OB2 (mà OB=R)
⇒OA⋅OE=R2⇒OA⋅OE=R2 (đpcm)
c) Vì tiếp tuyến BP cắt tiếp tuyến PK tại P
⇒PB=PK⇒PB=PK
Vì tiếp tuyến KQ cắt tiếp tuyến QC tại Q
⇒KQ=QC⇒KQ=QC
Ta có: PAPQ=AP+PQ+AQPAPQ=AP+PQ+AQ =AP+PK+KQ+AQ=AP+PK+KQ+AQ
⇔PAPQ=(AP+PB)+(QC+AQ)⇔PAPQ=(AP+PB)+(QC+AQ)
⇔PAPQ=AB+AC⇔PAPQ=AB+AC
Vì AB+ACAB+AC không thay đổi khi K chuyển động trên cung nhỏ BC
⇒⇒ Chu vi tam giác AQP không thay đổi khi K thay đổi trên cung nhỏ BC (đpcm).
d) Tự CM: ΔMOP∼ΔNQOΔMOP∼ΔNQO
⇒MPNO=MONQ⇒MPNO=MONQ ⇔MP⋅NQ=MO⋅NO=MN2⋅MN2⇔MP⋅NQ=MO⋅NO=MN2⋅MN2
⇔MP⋅NQ=MN24⇔MP⋅NQ=MN24
⇔MN2=4⋅(MP⋅NQ)⇔MN2=4⋅(MP⋅NQ)
⇔MN=2⋅MN⋅NQ−−−−−−−−√⇔MN=2⋅MN⋅NQ
Áp dụng bđt Côshi ta có:
2⋅MP⋅NQ−−−−−−−−√≤MP+NQ2⋅MP⋅NQ≤MP+NQ
⇔MN≤MP+NQ⇔MN≤MP+NQ (đpcm).
a) \(\hept{\begin{cases}2x-3y=5\\4x+y=3\end{cases}}\) và \(\hept{\begin{cases}2x-3y=5\\12x+3y=a\end{cases}}\)
Ta thấy \(2x-3y=5\Leftrightarrow2x-3y=5\)(Luôn đúng)
Để 2 hệ tương đương :
\(4x+y=3\Leftrightarrow12x+3y=a\)
\(\Leftrightarrow3\left(4x+y\right)=3.3\)
\(\Leftrightarrow12x+3y=9=a\)
Vậy để 2 hệ phương trình tương đương \(\Leftrightarrow a=9\)
b) \(\hept{\begin{cases}x-y=2\\3x+y=1\end{cases}}\) và \(\hept{\begin{cases}2ax-2y=1\\x+ay=2\end{cases}}\)
Ta có : \(x-y=x+ay=2\)
\(\Leftrightarrow y=-ay\)
\(\Leftrightarrow a=-1\)
Thử lại : \(a=-1\)
\(\Leftrightarrow3x+y=-2x-2y=1\)
\(\Leftrightarrow3x+y-2x-2y=2\)
\(\Leftrightarrow x-y=2\)(TM)
Vậy để 2 hệ phương trình tương đương \(\Leftrightarrow a=-1\)