Cho tam giác ABC cân tại A, góc A nhọn.
Kẻ BH vuông góc AC tại H, kẻ CK vuông góc AB tại K. Gọi D là giao điểm của BH và CK.
a) Chứng minh: BH = CK
b)Chứng minh:tam giác AKH và tam giác DBC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(DH\perp BC\) tại H
Ta có: \(\hept{\begin{cases}AB\perp AC\\EC\perp AC\end{cases}\Rightarrow AB//CE\Rightarrow\widehat{ABD}=\widehat{BEC}}\)
\(\Rightarrow\widehat{BEC}=\widehat{EBC}\left(=\widehat{ABD}\right)\)
=> tam giác BEC cân tại C
=> BC=CE
Tam giác BDA = TAM GIÁC BDH => AD=DH
Mà DH<DC (vì DH vuông góc với HC)
Áp dụng định lý Pytago vào tam giác vuông ta có:
\(BD^2=AB^2+AD^2;DE^2=CE^2+CD^2\)
Ta có: AB<BC=CE
VÀ AD<DC(DH<DC)
\(\Rightarrow BD^2< DE^2\Rightarrow BD< DE\)
Vậy chu vi tam giác ABD< chu vi tam giác CDE (đpcm)
a) Vì Bˆ=Cˆ(gt)B^=C^(gt)
Mà BD,CE là tia phân giác của BˆB^ và CˆC^
=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^
Xét ΔBCD và ΔCBE có:
Bˆ=Cˆ(gt)B^=C^(gt)
BC: cạnh chung
DBCˆ=ECBˆDBC^=ECB^(gt)
=>ΔBCD=ΔCBE(g.c.g)
b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)
=>ΔOBC cân tại O
=>OB=OC
c) xét 2 tam giác EOB và DOC có:
góc EOB=góc DOC(đối đỉnh)
OB=OC
góc EBO=góc DOC(chứng minh ở phần a )
=> 2 tam giác EOB=DOC(g.c.c)
=> OE=OD(2 cạnh tương ứng)
=> góc BEO =góc CDO(2 góc tương ứng)
góc BEO+góc OEK=180độ(kề bù)
góc CDO+góc ODH=180độ(kề bù )
=> góc OEK=góc ODH
xét 2 tam giác OKE và OHD có:
góc OKE=góc OHD(=90độ)
cạnh OE=OD(chứng minh trên)
góc OEK=góc ODH(chứng minh trên )
=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)
=> OK=OH(2 cạnh tương ứng)
A B C H K D 1 1 2 2
a) Xét \(\Delta KAC\)và \(\Delta HAB\)có:
\(\widehat{A}\)chung
\(AC=AB\)(vì \(\Delta ABC\)cân tại A)
\(\widehat{AKC}=\widehat{AHB}\left(=90^0\right)\)
\(\Rightarrow\Delta KAC=\Delta HAB\left(g.c.g\right)\)
\(\Rightarrow CK=BH\)(2 cạnh tương ứng) (điều phải chứng minh)
b) \(\Delta KAC=\Delta HAB\)(theo câu a))
\(\Rightarrow KA=HA\)(2 cạnh tương ứng)
\(\Rightarrow\Delta AHK\)cân tại A (điều phải chứng minh)
Lại \(\Delta KAC=\Delta HAB\)(theo câu a))
\(\Rightarrow\widehat{C_1}=\widehat{B_1}\)(2 góc tương ứng)
Ta có: \(\widehat{ABC}=\widehat{ACB}\)(vì \(\Delta ABC\)cân tại A)
Mà \(\widehat{B_1}+\widehat{B_2}=\widehat{ABC};\widehat{C_1}+\widehat{C_2}=\widehat{ACB}\)
\(\Rightarrow\widehat{B_1}+\widehat{B_2}=\widehat{C_1}+\widehat{C_2}\)
Mà \(\widehat{B_1}=\widehat{C_1}\)(chứng minh trên)
\(\Rightarrow\widehat{B_2}=\widehat{C_2}\)\(\Rightarrow\Delta DBC\)cân tại D (điều phải chứng minh)