Cho tổng S = 1,5 + 5,5 + 9,5 +... + 193,5 + 197,5
a) Tìm số hạng thứ hai của tổng S.
b) Tính giá trị của tổng S.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cần tìm là \(26:\dfrac{2}{3}=26\cdot\dfrac{3}{2}=39\)
p: \(30x-3x=5\cdot54\)
=>\(27x=270\)
=>\(x=\dfrac{270}{27}=10\)
q: 3(x-2)+2(x+5)=29
=>3x-6+2x+10=29
=>5x+4=29
=>5x=25
=>\(x=\dfrac{25}{5}=5\)
t: (27-3x)(x-5)=0
=>3(9-x)(x-5)=0
=>(9-x)(x-5)=0
=>\(\left[{}\begin{matrix}9-x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=5\end{matrix}\right.\)
v: x+(x+1)+...+(x+30)=1240
=>31x+(1+2+...+30)=1240
=>\(31x+30\cdot\dfrac{31}{2}=1240\)
=>\(31\left(x+15\right)=31\cdot40\)
=>x+15=40
=>x=40-15=25
s: (x+2)+(4x+4)+(7x+6)+...+(25x+18)+(28x+20)=1560
=>(x+4x+7x+...+25x+28x)+(2+4+6+...+20)=1560
=>\(x\left(1+4+...+28\right)+2\left(1+2+3+...+10\right)=1560\)
=>\(x\left[\left(\dfrac{28-1}{3}+1\right)\cdot\dfrac{\left(28+1\right)}{2}\right]+2\cdot\dfrac{10\cdot11}{2}=1560\)
=>\(x\left[10\cdot\dfrac{29}{2}\right]+10\cdot11=1560\)
=>\(145x=1560-110=1450\)
=>x=10
Chiều dài mảnh vườn thứ ba là: \(\dfrac{65}{12}-\dfrac{25}{6}=\dfrac{65}{12}-\dfrac{50}{12}=\dfrac{15}{12}=\dfrac{5}{4}\left(m\right)\)
Chiều dài mảnh vườn thứ nhất là:
\(\dfrac{65}{12}-\dfrac{15}{4}=\dfrac{65}{12}-\dfrac{45}{12}=\dfrac{20}{12}=\dfrac{5}{3}\left(m\right)\)
Chiều dài mảnh vườn thứ hai là:
\(\dfrac{25}{6}-\dfrac{5}{3}=\dfrac{25}{6}-\dfrac{10}{6}=\dfrac{15}{6}=\dfrac{5}{2}\left(m\right)\)
a: \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)
\(=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3\)
\(=6ab^2\)
b: \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-x^3-3x^2-3x-1+3\left(x^2-1\right)\)
\(=-3x^2-3x-9+3x^2-3=-3x-12\)
a: \(2^x+2^{x+4}=544\)
=>\(2^x+2^x\cdot16=544\)
=>\(17\cdot2^x=544\)
=>\(2^x=32=2^5\)
=>x=5
b: \(4^{2x+1}+4^{2x}=80\)
=>\(4^{2x}\cdot4+4^{2x}=80\)
=>\(4^{2x}\cdot5=80\)
=>\(4^{2x}=16=4^2\)
=>2x=2
=>x=1
c: \(3^{2x+2}+3^{2x+1}=108\)
=>\(3^{2x}\cdot9+3^{2x}\cdot3=108\)
=>\(12\cdot3^{2x}=108\)
=>\(3^{2x}=9=3^2\)
=>2x=2
=>x=1
d: \(7^{x+3}-7^{x+1}=16464\)
=>\(7^x\cdot343-7^x\cdot7=16464\)
=>\(7^x\cdot336=16464\)
=>\(7^x=49=7^2\)
=>x=2
Dựng \(AH\perp CD;BK\perp CD\left(H;K\in CD\right)\)
Xét tg vuông ADH có
\(\widehat{DAH}=90^o-\widehat{D}=30^o\)
\(\Rightarrow DH=\dfrac{AD}{2}=\dfrac{4}{2}=2cm\) (trong tg vuông cạnh đối diện góc \(30^o\) băng nửa cạnh huyền)
\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{16-4}=\sqrt{12}=2\sqrt{3}cm\)
\(\Rightarrow AH=BK=2\sqrt{3}cm\) (đường cao của hình thang)
Xét tg vuông BCK có
\(\widehat{KBC}=90^o-\widehat{C}=45^o\)
=> tg BCK vuông cân tại K \(\Rightarrow CK=BK=2\sqrt{3}cm\)
\(\Rightarrow BC=\sqrt{BK^2+CK^2}=\sqrt{12+12}=2\sqrt{6}cm\)
Xét HCN ABKH có
\(AB=KH=CD-DH-CK=8-2\sqrt{3}-2\sqrt{3}=8-4\sqrt{3}=4\left(2-\sqrt{3}\right)cm\)
1/3 tuổi của Hải 4 năm trước bằng 1/4 tuổi của Hải 4 năm sau
=>\(\dfrac{1}{3}-\dfrac{1}{4}\) số tuổi của Hải năm nay là \(\dfrac{1}{4}\times4+\dfrac{1}{3}\times4=1+\dfrac{4}{3}=\dfrac{7}{3}\)
Tuổi của Hải năm nay là \(\dfrac{7}{3}:\dfrac{1}{12}=\dfrac{7}{3}\times12=28\left(tuổi\right)\)
1: \(x^2-25=\left(x-5\right)\left(x+5\right)\)
2: \(9x^2-\dfrac{1}{16}y^2=\left(3x\right)^2-\left(\dfrac{1}{4}y\right)^2\)
\(=\left(3x-\dfrac{1}{4}y\right)\left(3x+\dfrac{1}{4}y\right)\)
3: \(x^6-y^4=\left(x^3\right)^2-\left(y^2\right)^2=\left(x^3-y^2\right)\left(x^3+y^2\right)\)
4: \(\left(2x-5\right)^2-64=\left(2x-5-8\right)\left(2x-5+8\right)\)
\(=\left(2x-13\right)\left(2x+3\right)\)
5: \(81-\left(3x+2\right)^2\)
\(=\left(9-3x-2\right)\left(9+3x+2\right)\)
\(=\left(-3x+7\right)\left(3x+11\right)\)
6: \(9\left(x-5y\right)^2-16\left(x+y\right)^2\)
\(=\left(3x-15y\right)^2-\left(4x+4y\right)^2\)
\(=\left(3x-15y-4x-4y\right)\left(3x-15y+4x+4y\right)\)
\(=\left(-x-19y\right)\left(7x-11y\right)\)
7: \(x^3-8=x^3-2^3=\left(x-2\right)\left(x^2+2x+4\right)\)
8: \(27x^3+125y^3=\left(3x\right)^3+\left(5y\right)^3\)
\(=\left(3x+5y\right)\left(9x^2-15xy+25y^2\right)\)
9: \(x^6+216=\left(x^2\right)^3+6^3\)
\(=\left(x^2+6\right)\left(x^4-6x^2+36\right)\)
10: \(x^2+8x+16=x^2+2\cdot x\cdot4+4^2=\left(x+4\right)^2\)
11: \(9x^2-12xy+4y^2\)
\(=\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\)
\(=\left(3x-2y\right)^2\)
12: \(-25x^2y^2+10xy-1\)
\(=-\left[\left(5xy\right)^2-2\cdot5xy\cdot1+1^2\right]\)
\(=-\left(5xy-1\right)^2\)
13: \(x^3-6x^2+12x-8\)
\(=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\)
\(=\left(x-2\right)^3\)
14: \(8x^3+12x^2y+6xy^2+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
a: Số hạng thứ hai của tổng S là 5,5
b: Số số hạng là (197,5-1,5):4+1=196:4+1=50(số)
Tổng của dãy số là: \(S=\left(197,5+1,5\right)\cdot\dfrac{50}{2}=199\cdot25=4975\)