Rút gọn (nhớ DKXD)
\(A=\frac{1}{1-\sqrt{a}}+\frac{a\sqrt{a}}{\sqrt{a}-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1-\sqrt{a}}+\frac{a\sqrt{a}}{\sqrt{a}-1}\left(a\ge0,a\ne1\right)\)
\(A=\frac{-1}{\sqrt{a}-1}+\frac{a\sqrt{a}}{\sqrt{a}-1}\)
\(A=\frac{-1+a\sqrt{a}}{\sqrt{a}-1}=\frac{a\sqrt{a}-1}{\sqrt{a}-1}\)
\(A=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}\)
\(A=\frac{a+\sqrt{a}+1}{1}=a+\sqrt{a}+1\)
Vậy.............
-Chúc bạn học tốt >.<-
_Minh ngụy_
\(A=\frac{16x}{3-x}+\frac{3}{x}+1=\frac{16x}{3-x}+\frac{3-x}{x}+2\ge8+2=10\)
Dau '=' xay ra khi \(x=\frac{3}{5}\)
Vay \(A_{min}=10\)khi \(x=\frac{3}{5}\)
Lời giải :
\(A=2x+\frac{9}{x-1}\)
\(A=2x-2+\frac{9}{x-1}+2\)
\(A=2\left(x-1\right)+\frac{9}{x-1}+2\)
Áp dụng bđt Cauchy :
\(A\ge2\sqrt{\frac{2\cdot\left(x-1\right)\cdot9}{x-1}}+2=6\sqrt{2}+2\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-1\right)=\frac{9}{x-1}\Leftrightarrow x=\frac{2+3\sqrt{2}}{2}\)
AB = 10cm
BC= 12 cm
Gọi \(H=AD\) \(\Omega\) \(BC\)
Ta có AD vuông góc với BC mà ADlà đường kính
\(\Rightarrow\)AD là đường trung trực của BC
\(\Rightarrow\)H là ttrung điểm \(\Rightarrow HC=HB=\frac{1}{2}.BC=6cm\)
Tam giác ABC vuông tại H
\(\Rightarrow AH=\sqrt{AB^2-HB^2}=8cm\)
Tam giác ABD vuông tại B (chắn nửa đương tròn )
\(\Rightarrow AD=\frac{AB^2}{AH}=\frac{10^2}{8}=12,5cm\)
\(\Rightarrow R=\frac{1}{2}.AD=6,25cm\)
Vậy bán kính của đườn tròn là : \(6,25cm\)
Chúc bạn học tốt !!!
\(a,M=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)=\frac{x^4-1-x^4+x^2-1}{x^2+1}=\frac{x^2-2}{x^2+1}\)
\(b,\)Biến đổi : \(M=1-\frac{3}{x^2+1}\).\(M\)bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất
\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
\(\Rightarrow M\)bé nhất \(=-2\)
y=-2+3
y1=-2x1+3
y2=-2x2+3 HUHU MIK MOI LOP 7 MA LAM TOAN LOP 9 DO MOI NGUOI K DE UNG HO MIK NHE
y2-y1=-2(x2-x1)
x2>x1=>x2-x1>0=>-x2(x2-x1)<0
=>y2-y1<0
=>y2<y1=>ham so dot bien (dpcm)
-tham khảo tại bài mà mình đã giải tại đây-
Câu hỏi của Trần Nam Hải - Toán lớp 9 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/228029923283.html
- Chúc bạn học tốt -
_Minh ngụy_
\(A=\frac{1}{1-\sqrt{a}}+\frac{a\sqrt{a}}{\sqrt{a}-1}\left(\text{ĐKXĐ: a}\ne1\right)\)
\(A=\frac{-1}{-\left(1-\sqrt{a}\right)}+\frac{\left(\sqrt{a}\right)^2.\sqrt{a}}{\sqrt{a}-1}\)
\(A=\frac{-1}{\sqrt{a}-1}+\frac{\sqrt{a}^3}{\sqrt{a}-1}\)
\(A=\frac{-1+\sqrt{a}^3}{\sqrt{a}-1}\)
\(A=\frac{\sqrt{a}^3-1}{\sqrt{a}-1}\)
\(A=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}\)
\(A=a+\sqrt{a}+1\)