Thu gọn và sắp xếp theo lũy thừa giảm dần lũy thừa của biến :
1, \(A\left(x\right)=6x^4-5x^2+4x-3x^4+2x^3\)
2, \(A\left(x\right)=3x^2+7x^3-3x^3+6x^3-3x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
b: Ta có: ΔBAD=ΔBMD
=>DA=DM
mà DM<DC
nên DA<DC
c: Xét ΔBKC có
KM,CA là các đường cao
KM cắt CA tại D
Do đó: D là trực tâm của ΔBKC
=>BD\(\perp\)KC tại N
Xét ΔKBC có
BN là đường cao
BN là đường phân giác
Do đó: ΔKBC cân tại B
** Số vở của 3 anh em tỉ lệ 20,25,10 thì không biết ba anh em đang được xếp theo thứ tự là anh cả => em giữa => em út đúng không bạn?
Lời giải:
Gọi số vở của anh cả, em giữa, em út lần lượt là $a,b,c$ (quyển)
Theo bài ra: $a+b+c=90$
Khi anh cả cho em út 10 quyển vở thì lúc này số vở của ba anh em lần lượt là: $a-10, b, c+10$
Áp dụng TCDTSBN:
$\frac{a-10}{20}=\frac{b}{25}=\frac{c+10}{10}=\frac{a-10+b+c+10}{20+25+10}$
$=\frac{a+b+c}{55}=\frac{90}{55}$ (số này không phải số nguyên)
Bạn xem lại xem có ghi nhầm đề không nhỉ?
a: Xét ΔKNP vuông tại K và ΔHPN vuông tại H có
NP chung
\(\widehat{KNP}=\widehat{HPN}\)(ΔMPN cân tại M)
Do đó: ΔKNP=ΔHPN
b: Ta có: ΔKNP=ΔHPN
=>\(\widehat{KPN}=\widehat{HNP}\)
=>\(\widehat{ENP}=\widehat{EPN}\)
=>ΔENP cân tại E
c: Xét ΔMEN và ΔMEP có
ME chung
EN=EP
MN=MP
Do đó: ΔMEN=ΔMEP
=>\(\widehat{EMN}=\widehat{EMP}\)
=>ME là phân giác của góc NMP
A. Vì tam giác MNP cân tại M nên NP = MP.
- Vì NH vuông góc với MP và PK vuông góc với MN nên góc NHP = góc PKN = 90 độ.
- Vì NH cắt PK tại E nên HE = KE.
=> Vậy, tam giác NHP và tam giác PKN có hai cạnh và góc giữa hai cạnh đó bằng nhau nên tam giác NHP = tam giác PKN (theo nguyên lý hai cạnh và góc giữa hai cạnh đó).
B. Vì tam giác NHP = tam giác PKN nên góc NHE = góc KEP.
- Vì NH vuông góc với MP và PK vuông góc với MN nên góc HNE = góc EKP = 90 độ.
- Vậy, tam giác NHE và tam giác PKE có hai góc và một cạnh giữa hai góc đó bằng nhau nên tam giác NHE = tam giác PKE (theo nguyên lý hai góc và cạnh giữa hai góc đó).
=> Do đó, NE = PE. Vậy, ME là phân giác của góc NMP.
Lời giải:
a.
Ta thấy: $AB< AC< BC$
$\Rightarrow \widehat{C}< \widehat{B}< \widehat{A}$ (tính chất góc đối diện cạnh lớn hơn thì lớn hơn)
b.
Xét tam giác $BDC$ có $CA, DK$ là 2 đường trung tuyến cắt nhau tại $M$ nên $M$ là trọng tâm tam giác $BDC$
$\Rightarrow MC=\frac{2}{3}CA=\frac{2}{3}.8=\frac{16}{3}$ (cm)
c.
Do $Q$ nằm trên đường trung trực của $AC$ nên $QC=QA(1)$
$\Rightarrow QAC$ là hình tam giác cân tại $Q$
$\Rightarrow \widehat{QAC}=\widehat{QCA}$
$\Rightarrow 90^0-\widehat{QAC}=90^0-\widehat{QCA}$
$\Rightarrow \widehat{DAQ}=\widehat{QDA}$
$\Rightarrow QAD$ cân tại $Q$
$\Rightarrow QA=QD(2)$
Từ $(1); (2)\Rightarrow QD=QC$
$\Rightarrow BQ$ là trung tuyến của tam giác $BDC$ ứng với cạnh $DC$
Mà theo phần b, $M$ là trọng tâm của $BDC$ nên $BM$ cũng là đường trung tuyến của $BDC$ ứng với cạnh $DC$
$\Rightarrow B,Q,M$ thẳng hàng.
a) Do BD = BC và ∠BDA = ∠BCA = 90° nên ta có tam giác ABD = tam giác ABC (theo định lý góc - cạnh - góc).
=> Vậy, tam giác ABD = tam giác ABC.
b) Do CE // AD và AC cắt CE tại E nên ta có ∠CAE = ∠DAE.
- Do tam giác ABD = tam giác ABC nên AB = AD.
- Vì vậy, tam giác ADE là tam giác cân tại D, tức là AE = DE.
- Do tam giác ABD = tam giác ABC nên AC = BC.
- Vì vậy, tam giác BCE là tam giác cân tại B, tức là BE = CE.
- Do AE = DE và BE = CE nên AC = CE.
=> Vậy, ACE là tam giác cân.
a: Xét ΔABC vuông tại B và ΔABD vuông tại B có
AB chung
BC=BD
Do đó: ΔABC=ΔABD
b: Ta có: CE//AB
=>\(\widehat{CEA}=\widehat{DAB}\)
mà \(\widehat{DAB}=\widehat{CAB}\)(ΔABC=ΔABD)
nên \(\widehat{CAE}=\widehat{CEA}\)
=>ΔCAE cân tại C