p=4n-7/n-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta KAC\)và \(\Delta HAB\)có:
\(\widehat{A}\)chung
\(AC=AB\)(vì \(\Delta ABC\)cân tại A)
\(\widehat{AKC}=\widehat{AHB}\left(=90^0\right)\)
\(\Rightarrow\Delta KAC=\Delta HAB\left(g.c.g\right)\)
\(\Rightarrow CK=BH\)(2 cạnh tương ứng) (điều phải chứng minh)
b) \(\Delta KAC=\Delta HAB\)(theo câu a))
\(\Rightarrow KA=HA\)(2 cạnh tương ứng)
\(\Rightarrow\Delta AHK\)cân tại A (điều phải chứng minh)
Lại \(\Delta KAC=\Delta HAB\)(theo câu a))
\(\Rightarrow\widehat{C_1}=\widehat{B_1}\)(2 góc tương ứng)
Ta có: \(\widehat{ABC}=\widehat{ACB}\)(vì \(\Delta ABC\)cân tại A)
Mà \(\widehat{B_1}+\widehat{B_2}=\widehat{ABC};\widehat{C_1}+\widehat{C_2}=\widehat{ACB}\)
\(\Rightarrow\widehat{B_1}+\widehat{B_2}=\widehat{C_1}+\widehat{C_2}\)
Mà \(\widehat{B_1}=\widehat{C_1}\)(chứng minh trên)
\(\Rightarrow\widehat{B_2}=\widehat{C_2}\)\(\Rightarrow\Delta DBC\)cân tại D (điều phải chứng minh)
\(P=\frac{4n-7}{n-2}=\frac{4\left(n-2\right)+1}{n-2}=4+\frac{1}{n-2}\)
P là số nguyên \(\Leftrightarrow4+\frac{1}{n-2}\)là số nguyên\(\Leftrightarrow\frac{1}{n-2}\)là số nguyên
\(\Leftrightarrow1⋮n-2\)\(\Leftrightarrow n-2\inƯ\left(1\right)\in\left\{\pm1\right\}\)
Ta có bảng sau :
\(\Leftrightarrow n\in\left\{1;3\right\}\)(thỏa mãn \(n\inℤ\))
Vậy \(n\in\left\{1;3\right\}\)thì P là số nguyên.
Trả lời:
\(P=\frac{4n-7}{n-2}\)\(=\frac{4\left(n-2\right)+1}{n-2}=\frac{4\left(n-2\right)}{n-2}+\frac{1}{n-2}\)
Để P là số nguyên thì \(\frac{1}{n-2}\)là số nguyên
\(\Rightarrow n-2\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng sau:
Vậy n\(\in\){ 3 ; 1 } thì P là số nguyên