Rút gọn
\(\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khó vậy bạn có đăng bài nào lớp 3456 ko mih làm cho nhưng bài dễ mih làm cho
Sửa lại đề nha , đề đúng nè :
\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{x-1}\right):\)\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{x+2\sqrt{x}+1}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\)\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{\left(\sqrt{x}+1\right)^2}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x}{\left(\sqrt{x}+1\right)^2}\)
\(=\frac{x-\sqrt{x}-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{x+\sqrt{x}-x}{\left(\sqrt{x}+1\right)^2}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\sqrt{x}}=-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(\)
ĐK \(x\ge2\)
\(PT\Leftrightarrow x^2+2x\sqrt{x-2}+x-2=4\left(x-1\right)\)
\(\Leftrightarrow x^2-3x+2+2x\sqrt{x-2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+2x\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}\left[\left(x-1\right)\sqrt{x-2}+2x\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\left(x-1\right)\sqrt{x-2}+2x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+1\right)^2\left(x+2\right)=4x^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x^3+5x+2=0\left(loại\right)\end{cases}}\)
Vậy x=2 là nghiệm của pt
Ta có:
\(a+b+c\ge abc\) (gt)
mà \(a^2+b^2+c^2\ge a+b+c\forall a,b,c\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge abc\left(đpcm\right)\)
\(P=\frac{x\sqrt{x}-8}{x+2\sqrt{x}+4}+3\left(1-\sqrt{x}\right).\)
\(=\frac{\sqrt{x^3}-2^3}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)
\(=\sqrt{x}-2+3-3\sqrt{x}=-2\sqrt{x}+1\)
\(Q=\frac{2P}{1-P}=\frac{2\left(-2\sqrt{x}+1\right)}{1-\left(-2\sqrt{x}+1\right)}\)
\(=\frac{-4\sqrt{x}+2}{1+2\sqrt{x}-1}=\frac{-2\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{-2\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=-2+\frac{1}{\sqrt{x}}\)
\(Q\in Z\Leftrightarrow-2+\frac{1}{\sqrt{x}}\in Z\Rightarrow\frac{1}{\sqrt{x}}\in Z\)
\(\Rightarrow1\)\(⋮\)\(\sqrt{x}\)\(\Rightarrow\sqrt{x}\inƯ_1\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)
Vậy \(Q\in Z\Leftrightarrow x=1\)
\(\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}=\frac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}=\frac{3-\sqrt{7}}{2}+\frac{3+\sqrt{7}}{2}=\frac{6}{2}=3\)
CHÚC BẠN HỌC TỐT