4/7+2/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a,-\dfrac{2}{3}x+\dfrac{3}{5}=1\dfrac{1}{3}\\ -\dfrac{2}{3}x+\dfrac{3}{5}=\dfrac{4}{3}\\ -\dfrac{2}{3}x=\dfrac{11}{15}\\ x=-\dfrac{11}{10}\\ b,\dfrac{1}{3}:x-\dfrac{2}{3}=5\\\dfrac{1}{3}:x=\dfrac{17}{3}\\ x=\dfrac{17}{9}\\ c,\left(x+3,6\right):0,3=9,6\\ x+3,6=2,88\\ x=-0,72.\\ d,x+14,12-33,2=66,8\\ x-19,08=66,8\\ x=85,88 \)

Bài 1:
a; \(\dfrac{-24}{11}\) + \(\dfrac{-19}{13}\) - (\(\dfrac{-2}{11}\) + \(\dfrac{20}{13}\))
= - \(\dfrac{24}{11}\) - \(\dfrac{19}{13}\) + \(\dfrac{2}{11}\) - \(\dfrac{20}{13}\)
= - (\(\dfrac{24}{11}\) - \(\dfrac{2}{11}\)) - (\(\dfrac{19}{13}\) + \(\dfrac{20}{13}\))
= - \(\dfrac{22}{11}\) - \(\dfrac{39}{13}\)
= - 2 - 3
= - 5
Bài 6
a; A = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\) + ... + \(\dfrac{1}{50^2}\)
\(\dfrac{1}{3^2}\) = \(\dfrac{1}{9}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}-\dfrac{1}{4}\)
\(\dfrac{1}{5^2}\) < \(\dfrac{1}{4.5}\) = \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)
.....................................
\(\dfrac{1}{50^2}\) < \(\dfrac{1}{49.50}\) = \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
Cộng vế với vế ta có:
A = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ... + \(\dfrac{1}{50^2}\) < \(\dfrac{1}{9}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{50}\) = \(\dfrac{4}{9}\) - \(\dfrac{1}{50}\) < \(\dfrac{4}{9}\) (1)
\(\dfrac{1}{3^2}\) = \(\dfrac{1}{9}\)
\(\dfrac{1}{4^2}\) > \(\dfrac{1}{4.5}\) = \(\dfrac{1}{4}-\dfrac{1}{5}\)
....................................
\(\dfrac{1}{50^2}\) > \(\dfrac{1}{49.50}\) = \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
Cộng vế với vế ta có:
A = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ... + \(\dfrac{1}{50^2}\) > \(\dfrac{1}{9}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{50}\) = \(\dfrac{1}{4}\) + (\(\dfrac{1}{9}\) - \(\dfrac{1}{50}\)) > \(\dfrac{1}{4}\) (2)
Kết hợp (1) và (2) ta có: \(\dfrac{1}{4}\) < A < \(\dfrac{4}{9}\) (đpcm)


a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
BH là đường cao
BH là đường phân giác
Do đó: ΔBFC cân tại B
c: Xét ΔBFC có
BH,CA là các đường cao
BH cắt CA tại E
Do đó: E là trực tâm của ΔBFC
=>FE\(\perp\)BC
mà ED\(\perp\)BC
nên F,E,D thẳng hàng

\(\dfrac{3}{4}\) + \(\dfrac{2}{7}\)
= \(\dfrac{21}{28}\) + \(\dfrac{8}{28}\)
= \(\dfrac{29}{28}\)
$\frac47+\frac29=\frac{36}{63}+\frac{14}{63}=\frac{50}{63}$
Giúp con với